Page:Poincaré - La Science et l’Hypothèse.djvu/34

La bibliothèque libre.
Aller à : navigation, rechercher
Cette page a été validée par deux contributeurs.


capable de concevoir la répétition indéfinie d’un même acte dès que cet acte est une fois possible. L’esprit a de cette puissance une intuition directe et l’expérience ne peut être pour lui qu’une occasion de s’en servir et par là d’en prendre conscience.

Mais, dira-t-on, si l’expérience brute ne peut légitimer le raisonnement par récurrence, en est-il de même de l’expérience aidée de l’induction ? Nous voyons successivement qu’un théorème est vrai du nombre 1, du nombre 2, du nombre 3 et ainsi de suite, la loi est manifeste, disons-nous, et elle l’est au même titre que toute loi physique appuyée sur des observations dont le nombre est très grand, mais limité.

On ne saurait méconnaître qu’il y a là une analogie frappante avec les procédés habituels de l’induction. Mais une différence essentielle subsiste. L’induction, appliquée aux sciences physiques, est toujours incertaine, parce qu’elle repose sur la croyance à un ordre général de l’Univers, ordre qui est en dehors de nous. L’induction mathématique, c’est-à-dire la démonstration par récurrence, s’impose au contraire nécessairement, parce qu’elle n’est que l’affirmation d’une propriété de l’esprit lui-même.


VII

Les mathématiciens, je l’ai dit plus haut, s’efforcent toujours de généraliser les propositions