Page:Poincaré - La Science et l’Hypothèse.djvu/43

La bibliothèque libre.
Aller à : navigation, rechercher
Le texte de cette page a été corrigé et est conforme au fac-similé.


que 2 sera le plus petit de tous les nombres de la première classe. Le nombre 2 pourra être choisi comme symbole de cette répartition.

Il peut se faire, au contraire, que parmi les nombres de la seconde classe, il y en ait un qui soit plus grand que tous les autres ; c’est ce qui a lieu, par exemple, si la première classe comprend tous les nombres plus grands que 2, et la seconde tous les nombres plus petits que 2 et 2 lui-même. Ici encore, le nombre 2 pourra être choisi comme symbole de cette répartition.

Mais il peut arriver également que l’on ne puisse trouver ni dans la première classe un nombre plus petit que tous les autres, ni dans la seconde un nombre plus grand que tous les autres. Supposons, par exemple, que l’on mette dans la première classe tous les nombres commensurables dont le carré est plus grand que 2 et dans la seconde tous ceux dont le carré est plus petit que 2. On sait qu’il n’y en a aucun dont le carré soit précisément égal à 2. Il n’y aura évidemment pas dans la première classe de nombre plus petit que tous les autres, car quelque voisin que le carré d’un nombre soit de 2, on pourra toujours trouver un nombre commensurable dont le carré soit encore plus rapproché que 2.

Dans la manière de voir de M. Dedekind, le nombre incommensurable

\sqrt{2}

n’est autre chose que le symbole de ce mode