Page:Descartes La Géométrie.djvu/16

La bibliothèque libre.
Sauter à la navigation Sauter à la recherche
Cette page n’a pas encore été corrigée


306
La Géométrie.

que de ce qu’ils ne voyaient pas assez clairement leur rapport, causait beaucoup d’obscurité et d’embarras en la façon dont ils s’expliquaient ; car Pappus poursuit en cette sorte.


Si d’un point on mène à des droites données par position d’autres droites sous des angles donnés et que l’on donne le rapport composé de celui de l’une des menées à une autre, de celui des menées d’un second couple, de celui des menées d’un troisième, enfin de celui de la dernière à une donnée, s’il y a sept droites en tout, ou bien de celui des deux dernières, s’il y en a huit, le point se trouvera sur une ligne donnée par position. On pourra dire de même, quel que soit le nombre des droites, pair ou impair. Mais, comme je l’ai dit, pour aucun de ces lieux qui suivent celui à 4 droites, il n’y a eu une synthèse faite qui permette de connaître la ligne.


La question donc qui avait été commencée à résoudre par Euclide et poursuivie par Apollonius, sans avoir été achevée par personne, était telle : Ayant trois ou quatre, ou [un] plus grand nombre de lignes droites données par position ; premièrement on demande un point duquel on puisse tirer autant d’autres lignes droites, une sur chacune des données, qui fassent avec elles des angles donnés, et que le rectangle contenu en deux de celles qui seront ainsi tirées d’un même point, ait la proportion donnée avec le carré de la troisième, s’il n’y en a que trois ; ou bien avec le rectangle des deux autres, s’il y en a quatre ; ou bien, s’il y en a cinq, que le parallélépipède composé de trois ait la proportion donnée avec le paral-(lélépipède)