Page:Descartes La Géométrie.djvu/51

La bibliothèque libre.
Sauter à la navigation Sauter à la recherche
Cette page n’a pas encore été corrigée
341
Livre Second.

fût exact et assuré. Toutefois à cause qu’on ne se sert de cordes en ces constructions que pour déterminer des lignes droites dont on connaît parfaitement la longueur, cela ne doit point faire qu’on les rejette.


Que, pour trouver toutes les propriétés des lignes courbes, il suffit de savoir le rapport qu’ont tous leurs points à ceux des lignes droites ; et la façon de tirer d’autres lignes qui les coupent en tous ces points à angles droits.

Or de cela seul qu’on sait le rapport qu’ont tous les points d’une ligne courbe à tous ceux d’une ligne droite, en la façon que j’ai expliquée, il est aisé de trouver aussi le rapport qu’ils ont à tous les autres points et lignes données ; et ensuite de connaître les diamètres, les essieux[1], les centres et autres lignes ou points à qui chaque ligne courbe aura quelque rapport plus particulier ou plus simple qu’aux autres ; et ainsi d’imaginer divers moyens pour les décrire, et d’en choisir les plus faciles ; et même on peut aussi, par cela seul, trouver quasi[2] tout ce qui peut être déterminé touchant la grandeur de l’espace qu’elles comprennent, sans qu’il soit besoin que j’en donne plus d’ouverture. Et enfin pour ce qui est de toutes les autres propriétés qu’on peut attribuer aux lignes courbes, elles ne dépendent que de la grandeur des angles qu’elles font avec quelques autres lignes. Mais lorsqu’on peut tirer des lignes droites qui les coupent à angles droits, aux points où elles sont rencontrées par celles avec qui elles font les angles qu’on veut mesurer, ou, ce que je prends ici pour le même, qui coupent leurs contingentes[3], la grandeur de ces angles n’est pas plus malaisée à trouver que s’ils étaient compris entre deux lignes droites. C’est pourquoi je croirai avoir mis ici tout ce qui est requis pour les éléments des lignes courbes, lorsque j’aurai généralement donné la façon de tirer des lignes droites qui tombent à angles droits sur

  1. Axe.
  2. Quasiment
  3. Tangentes