Page:Revue générale des sciences pures et appliquées, année 19, numéro 9, 15 mai 1908.djvu/47

La bibliothèque libre.
Cette page a été validée par deux contributeurs.
387
HENRI POINCARÉ — LA DYNAMIQUE DE L’ÉLECTRON

deux quantités : la vitesse, d’une part, et le rapport de la charge électrique du projectile à sa masse, d’autre part ; on ne peut connaître la valeur absolue de cette masse, ni celle de la charge, mais seulement leur rapport ; il est clair, en effet, que, si l’on double à la fois la charge et la masse, sans changer la vitesse, on doublera la force qui tend à dévier le projectile ; mais, comme sa masse est également doublée, l’accélération et la déviation observable ne seront pas changées. L’observation des deux déviations nous fournira donc deux équations pour déterminer ces deux inconnues. On trouve une vitesse de 10 000 à 30 000 kilomètres par seconde ; quant au rapport de la charge à la masse, il est très grand. On peut le comparer au rapport correspondant en ce qui concerne l’ion hydrogène dans l’électrolyse ; on trouve alors qu’un projectile cathodique transporte environ mille fois plus d’électricité que n’en transporterait une masse égale d’hydrogène dans un électrolyte.

Pour confirmer ces vues, il faudrait une mesure directe de cette vitesse, que l’on comparerait avec la vitesse ainsi calculée. Des expériences anciennes de J.-J. Thomson avaient donné des résultats plus de cent fois trop faibles ; mais elles étaient sujettes à certaines causes d’erreur. La question a été reprise par Wiechert dans un dispositif où l’on utilise les oscillations hertziennes ; on a trouvé des résultats concordant avec la théorie, au moins comme ordre de grandeur ; il y aurait un grand intérêt à reprendre ces expériences. Quoi qu’il en soit, la théorie des ondulations paraît impuissante à rendre compte de cet ensemble de faits.

Les mêmes calculs, faits sur les rayons β du radium, ont donné des vitesses encore plus considérables : 100 000, 200 000 kilomètres ou plus encore. Ces vitesses dépassent de beaucoup toutes celles que nous connaissions. La lumière, il est vrai, on le sait depuis longtemps, fait 300 000 kilomètres par seconde ; mais elle n’est pas un transport de matière, tandis que, si l’on adopte la théorie de l’émission pour les rayons cathodiques, il y aurait des molécules matérielles réellement animées des vitesses en question, et il convient de rechercher si les lois ordinaires de la Mécanique leur sont encore applicables.

II. — Masse longitudinale et Masse transversale.

On sait que les courants électriques donnent lieu aux phénomènes d’induction, en particulier à la self-induction. Quand un courant croît, il se développe une force électromotrice de self-induction qui tend à s’opposer au courant ; au contraire, quand le courant décroît, la force électromotrice de self-induction tend à maintenir le courant. La self-induction s’oppose donc à toute variation de l’intensité du courant, de même qu’en Mécanique l’inertie d’un corps s’oppose à toute variation de sa vitesse. La self-induction est une véritable inertie. Tout se passe comme si le courant ne pouvait s’établir sans mettre en mouvement l’éther environnant et comme si l’inertie de cet éther tendait, en conséquence, à maintenir constante l’intensité de ce courant. Il faudrait vaincre cette inertie pour établir le courant, il faudrait la vaincre encore pour le faire cesser.

Un rayon cathodique, qui est une pluie de projectiles chargés d’électricité négative, peut être assimilé à un courant ; sans doute, ce courant diffère, au premier abord tout au moins, des courants de conduction ordinaire, où la matière est immobile et où l’électricité circule à travers la matière. C’est un courant de convection, où l’électricité, attachée à un véhicule matériel, est emportée par le mouvement de ce véhicule. Mais Rowland a démontré que les courants de convection produisent les mêmes effets magnétiques que les courants de conduction ; ils doivent produire aussi les mêmes effets d’induction. D’abord, s’il n’en était pas ainsi, le principe de la conservation de l’énergie serait violé ; d’ailleurs, Crémieu et Pender ont employé une méthode où l’on mettait en évidence directement ces effets d’induction.

Si la vitesse d’un corpuscule cathodique vient à varier, l’intensité du courant correspondant variera également, et il se développera des effets de self-induction qui tendront à s’opposer à cette variation. Ces corpuscules doivent donc posséder une double inertie : leur inertie propre d’abord, et l’inertie apparente due à la self-induction qui produit les mêmes effets. Ils auront donc une masse totale apparente, composée de leur masse réelle et d’une masse fictive d’origine électromagnétique. Le calcul montre que cette masse fictive varie avec la vitesse, et que la force d’inertie de self-induction n’est pas la même quand la vitesse du projectile s’accélère ou se ralentit, ou bien quand elle est déviée ; il en est donc de même de la force d’inertie apparente totale.

La masse totale apparente n’est donc pas la même quand la force réelle appliquée au corpuscule est parallèle à sa vitesse et tend à en faire varier la grandeur, et quand cette force est perpendiculaire à la vitesse et tend à en faire varier la direction. Il faut donc distinguer la masse totale longitudinale et la masse totale transversale. Ces deux masses totales dépendent, d’ailleurs, de la vitesse. Voilà ce qui résulte des travaux théoriques d’Abraham.

Dans les mesures dont nous parlions au chapitre