Aller au contenu

Page:Revue des Deux Mondes - 1845 - tome 10.djvu/696

La bibliothèque libre.
Cette page a été validée par deux contributeurs.

il en reste toujours un qui, jusqu’à présent, a résisté à toutes les tentatives et dont on n’a prouvé que quelques cas particuliers. Par une circonstance assez bizarre, Fermat avait donné une méthode pour démontrer ce théorème dans certains cas, et c’est précisément celui-là qui a bravé les efforts désespérés des géomètres, forcés d’avouer que sur ce point Fermat était plus avancé il y a deux siècles que nous ne le sommes aujourd’hui.

C’est surtout en établissant des propositions négatives que Fermat a déployé toute la puissance de son génie. Des propriétés de cette nature se rencontrent dans l’arithmétique la plus élémentaire. On connaît généralement la différence qu’il y a entre les nombres pairs et les nombres impairs, et l’on comprend sans peine qu’en ajoutant deux nombres pairs entre eux, on ne formera jamais un nombre impair. Voilà ce qu’on appelle une proposition négative. Quoique bien élémentaire, elle donne une idée de ce genre de propositions. Fermat en énonça de très difficiles, entre autres celle-ci : Si l’on prend deux nombres entiers à volonté, et qu’on multiplie chacun de ces nombres, deux fois de suite par lui-même, il est impossible que la somme de ces deux produits soit égale à un nombre quelconque multiplié également deux fois par lui-même. Si l’on choisit, par exemple, les nombres 3 et 10, en multipliant 3 d’abord par 3 on a 9, et en multipliant encore ce produit par 3, on obtient 27 ; en multipliant 10 deux fois de suite par lui-même, on a 1,000 ; la somme de 27 et de 1,000 est 1,027, qui n’est pas le produit d’un nombre multiplié deux fois par lui-même. Cela est vrai toujours, quels que soient les nombres que l’on choisisse. Cette proposition difficile, énoncée d’abord par Fermat sous la forme d’un défi adressé surtout aux géomètres anglais et hollandais, qui n’en aperçurent pas la difficulté, a été démontrée par Euler. Elle n’est qu’un cas particulier d’un théorème général dont on cherche encore la démonstration.

Des mathématiciens qui avaient fait de vains efforts pour démontrer les théorèmes trouvés par Fermat ont voulu jeter quelque doute sur la réalité des démonstrations qu’il déclarait posséder, et ils ont supposé que ce grand géomètre était parvenu à certains résultats plutôt par induction et un peu au hasard que par une analyse rigoureuse de la question. Certes, si Fermat nous était parfaitement inconnu, si l’on ne savait pas combien il était modeste et réservé, s’il n’avait laissé que des énoncés sans démonstration, le doute serait à la rigueur possible ; mais, quand il s’agit d’un homme aussi éminent, qui a fait d’autres découvertes dont il a donné des démonstrations qu’il n’a pourtant