Einstein et l’Univers/06

La bibliothèque libre.
Hachette (p. 142-170).
VI. Conception nouvelle de la gravitation.

CHAPITRE SIXIÈME

CONCEPTION NOUVELLE
DE LA GRAVITATION

Géométrie et réalitéLa géométrie d’Euclide et les autresContingence du criterium de PoincaréL’univers réel n’est pas euclidien mais riemannienLes avatars du nombre π ‖ Le point de vue de l’ivrogne…Lignes droites et géodésiquesLa nouvelle loi d’attraction universelleL’anomalie de la planète Mercure expliquéeThéorie gravitationnelle d’Einstein.


L’univers est-il conforme à la géométrie ? Voilà une question dont philosophes et savants ont beaucoup disputé, et que la déviation de la lumière par la pesanteur va nous permettre d’attaquer fort simplement.

On enseigne toute une magnifique série de théorèmes de géométrie solidement emboîtés les uns dans les autres et dont les principaux furent autrefois créés par un grand génie grec, Euclide. C’est pourquoi cette géométrie classique s’appelle la géométrie euclidienne. Ces théorèmes sont basés sur un certain nombre d’axiomes et de postulats qui ne sont, en somme, que des affirmations, des définitions.

La principale de ces définitions est la suivante : La ligne droite est le plus court chemin d’un point à un autre. Cela paraît tout simple aux écoliers parce qu’ils savent qu’au stade le coureur qui s’amuse à faire des zigzags arrivera au but après les autres… et quand on va souvent au terrain de sports on n’a ni l’envie, ni le loisir de se dessécher sur la validité des axiomes de la géométrie. Que veut dire exactement cette définition de la ligne droite ? On en a longtemps discuté et Henri Poincaré a écrit là-dessus des pages profondes et fines, mais dont la conclusion n’est pas dénuée d’un peu d’incertitude.

Dans la pratique, chacun de nous sait bien ce qu’il appelle une ligne droite : c’est la ligne que dessine l’arête d’une règle bien dressée. Comment sait-on qu’une règle est bien dressée ? En la plaçant devant l’œil et en observant que ses deux extrémités, lorsqu’on les vise, sont confondues par le regard qui voit en même temps tous les points intermédiaires de l’arête. C’est comme cela que les menuisiers jugent qu’une planche est rabotée droit. En un mot nous appelons ligne droite, dans la pratique, la ligne que suit le regard du tireur entre le guidon et le cran de mire.

Tout cela revient en somme à définir la ligne droite par la direction d’un rayon lumineux.

Comme qu’on retourne la question on en arrive toujours à ceci : dire que le bord d’un objet est droit, c’est dire que la ligne qui le délimite coïncide sur toute sa longueur avec un rayon lumineux[1]. On peut donc affirmer : pratiquement la ligne droite est le chemin parcouru par la lumière dans un milieu homogène.

Mais alors une question se pose. Le monde où nous vivons, l’univers est-il conforme à la géométrie d’Euclide, est-il euclidien, pour employer l’adjectif à la mode qui n’est peut-être pas encore au dictionnaire de l’Académie, mais qui y sera ?

Car il faut bien dire maintenant que la géométrie d’Euclide n’est pas la seule qu’on ait créée. Au xixe siècle des savants profonds et hardis, Riemann, Bolyay, Lobatchewski, Poincaré lui-même, ont fondé des géométries nouvelles très différentes, assez étranges. Elles sont tout aussi logiques et cohérentes que la géométrie classique d’Euclide, mais elles sont basées sur des axiomes, sur des postulats autres, c’est-à-dire sur des définitions différentes.

Par exemple on appelle parallèles deux lignes droites situées dans un même plan et qui ne se rencontrent jamais. La géométrie chère à notre enfance dit : par un point on ne peut faire passer qu’une seule parallèle à une droite donnée. C’est ce qu’on appelle le postulat d’Euclide. Survient Riemann qui n’admet pas ce postulat et le remplace par celui-ci : par un point on ne peut faire passer aucune droite parallèle à une droite donnée, c’est-à-dire aucune ligne qui ne la rencontre jamais. Et là-dessus il fonde une géométrie parfaitement cohérente.

Qui oserait affirmer que la géométrie d’Euclide est vraie, celle de Riemann fausse ? Comme constructions théoriques idéales, elles sont aussi vraies l’une que l’autre.

On peut poser la question suivante : le monde réel correspond-il à la géométrie classique d’Euclide ou à celle de Riemann ?

On a cru longtemps qu’il correspondait à la géométrie d’Euclide. Poincaré lui-même disait, parlant de celle-ci : « Elle est et restera la plus commode : 1o parce qu’elle est la plus simple ; 2o parce qu’elle s’accorde assez bien avec les propriétés des solides naturels, ces corps dont se rapprochent nos membres et notre œil et avec lesquels nous faisons nos instruments de mesure. »

Lorsque les anciens affirmaient que la Terre est plate, ils assuraient de même… ou à peu près : « Cette notion est la plus commode : 1o parce qu’elle est la plus simple ; 2o parce qu’elle s’accorde assez bien avec les propriétés des objets naturels avec lesquels nous sommes en contact. » Mais quand les hommes sont venus en contact avec des objets plus éloignés, quand les navigateurs et les astronomes ont multiplié ces objets nouveaux, la notion de la Terre plate a cessé d’être la plus commode, la plus simple, la mieux adéquate aux données sensibles. Et alors a surgi la notion de la rotondité de la Terre qui s’est trouvée infiniment plus commode, plus simple, mieux adaptée au monde extérieur.

La commodité, qui est pour Poincaré le criterium de la vérité scientifique, est une chose contingente et élastique. Tel point de vue est commode à Paris, qui ne le sera plus à Pontoise. Telle théorie est commode sur un espace de 100 mètres qui ne le sera plus sur un espace de 100 millions de kilomètres.

L’hypothèse d’une Terre plate a cédé le pas à celle d’une Terre ronde. La Terre immobile a cédé le pas à la Terre tournante. De même il semble qu’aujourd’hui, la géométrie euclidienne doive céder le pas à une autre, comme représentation commode du monde réel.

Dans l’Univers, dans notre espace réel peut-on mener une parallèle à une droite ? C’est-à-dire deux droites réelles situées dans le même plan peuvent-elles ne jamais se rencontrer ? Cette question signifie ceci : deux rayons lumineux cheminant dans l’espace vide et dans ce que (pour chaque fraction de ces rayons) nous appellerons un même plan, peuvent-ils ne jamais se rencontrer ? La réponse à cette question est non.

Puisque dans l’espace céleste ces deux rayons lumineux sont déviés par la gravitation des astres, puisque d’ailleurs ils sont déviés inégalement, leur distance à ces astres étant différente, il s’ensuit nécessairement qu’ils cessent d’être parallèles (au sens euclidien du mot) et qu’ils finissent par se rencontrer ; ou bien qu’ils cessent de remplir la première condition du parallélisme : la coexistence dans un même plan local.

En un mot, et pourvu qu’on le considère non plus dans le champ ridiculement borné des expériences de laboratoire, mais dans le vaste champ des étendues célestes, l’univers réel n’est pas euclidien parce que la lumière ne s’y propage pas en ligne droite.

Kant considérait les vérités, ou, pour mieux dire, les affirmations déductives de la géométrie euclidienne, comme des « jugements synthétiques a priori », comme des évidences sans autre issue qu’elles-mêmes. Nous venons de voir que là-dessus Kant s’est trompé, non seulement du point de vue de la géométrie théorique, mais aussi du point de vue de la géométrie réelle. L’étymologie seule du mot géométrie, qui signifie mesure du terrain, suffit d’ailleurs à montrer qu’elle fut à l’origine, et avant tout, une science pratique. Cela légitime assez la question que nous avons posée ici, de savoir à quelle géométrie s’apparente l’Univers réel.

Gauss, ce profond esprit, s’était déjà posé la question et il avait, au siècle passé, tenté des expériences précises pour mesurer si la somme des angles d’un triangle est égale à deux droits comme l’affirme la géométrie euclidienne. Dans ce dessein, il forma un vaste triangle dont les sommets étaient constitués par les points culminants de trois montagnes éloignées. L’une était le célèbre Brocken. Il fit, avec ses aides, simultanément des visées de chacun des sommets aux deux autres. Il trouva que la somme des trois angles du triangle ne différait de 180 degrés que d’une quantité égale aux erreurs d’expérience.

Beaucoup de béotiens et quelques philosophes se moquèrent fort de ces expériences et de Gauss. Ils déclarèrent, avec le catégorisme apriorique qu’on rencontre parfois chez les uns et les autres, que les mesures même si elles avaient eu un autre résultat n’auraient rien prouvé contre les théorèmes d’Euclide, mais établi seulement que quelque cause perturbatrice incurvait les rayons lumineux entre les trois sommets du triangle. C’est exact, mais cela ne signifie rien.

Si Gauss avait trouvé que la somme des angles du triangle étudié dépassait deux droits, cela aurait prouvé que la géométrie réelle n’était pas celle d’Euclide. La question que s’était posée Gauss était pleine de profondeur et de sens. Les béotiens et quelques philosophes qui le conspuèrent eussent pu être mis au défi de définir les lignes droites réelles, les lignes droites naturelles autrement que par les trajets de la lumière.

Si Gauss n’a pas trouvé que la somme des angles fût différente de deux droits c’est parce que ses mesures étaient trop peu précises. Si elles avaient été beaucoup plus exactes, ou s’il avait pu opérer sur un triangle plus grand, dont les sommets eussent été la Terre, Jupiter en opposition et une autre planète, il eût trouvé une différence notable.

L’Univers réel n’est donc pas euclidien. Il n’est à peu près euclidien que dans les régions de l’espace où la lumière se propage rectilignement, c’est-à-dire aux endroits très éloignés de toute masse gravitante, tel celui où nous avions plus haut abandonné l’obus de Jules Verne.

Bien d’autres raisons encore font que, par suite de la gravitation, l’Univers n’est pas conforme à la géométrie d’Euclide.

Exemple : Dans cette géométrie la longueur de la circonférence est avec son diamètre dans un certain rapport bien connu et qui est désigné par la lettre grecque π. Ce rapport qui exprime combien de fois le diamètre est compris dans la circonférence est égal à 3,14159265… etc… j’en passe car π possède un nombre infini de décimales. Alors voici la question : Dans la pratique, le rapport des circonférences à leurs diamètres est-il réellement égal à la valeur classique de π ? Par exemple le rapport de la circonférence de la Terre[2] à son diamètre a-t-il précisément cette valeur ? Selon Einstein, la réponse est non, et en voici la preuve : Imaginons que deux géodésiens, deux arpenteurs très habiles, très rapides et un peu magiciens, se proposent de mesurer la circonférence et le diamètre de la Terre à l’Équateur. Ils sont munis de règles graduées identiques. Ils commencent leurs mesures en même temps et en partant du même point de l’Équateur. Seulement l’un se dirige vers l’Ouest, l’autre vers l’Est et leurs vitesses sont égales et telles que celui qui va vers l’Ouest annule en quelque sorte la rotation de la Terre et voit toute la journée le Soleil immobile à la même hauteur au-dessus de l’horizon. Ainsi, dans les music-halls, on voit parfois un jongleur qui, marchant sur une boule en mouvement, reste cependant au sommet de la boule parce que la vitesse de ses pas est exactement égale et contraire au déplacement de la surface sphérique.

Un observateur immobile dans l’espace, par exemple sur le Soleil, verra donc immobile, en face de lui, celui de nos deux arpenteurs qui se dirige vers l’Ouest. Au contraire, celui qui va vers l’Est lui paraîtra tourner autour de la Terre et deux fois plus vite que s’il était resté à son point de départ.

Nos deux arpenteurs lorsqu’ils auront, à la même vitesse, achevé chacun de son côté de mesurer le tour de la Terre, auront-ils trouvé la même longueur ? Évidemment non. Car, comme le constate le sur-observateur placé dans le Soleil, le mètre de l’arpenteur qui va à l’Est est raccourci par sa vitesse, en vertu, nous l’avons montré, de la contraction Fitzgerald-Lorentz. Au contraire le mètre de l’arpenteur qui va à l’Ouest ne subit pas cette contraction, ainsi que le constate le sur-observateur solaire, par rapport à qui il est immobile.

Par conséquent les deux arpenteurs trouvent pour le diamètre terrestre des nombres différents, et celui qui se dirige vers l’Ouest trouve un nombre de mètres plus petit que l’autre. D’autre part il est évident que lorsqu’ils mesurent ensuite le diamètre terrestre en le parcourant à la même vitesse, nos deux observateurs trouveront pour ce diamètre deux valeurs identiques.

Le nombre π qui exprime, d’après les mesures faites, le rapport de la circonférence de la Terre à son diamètre, est donc différent, selon qu’on marche dans le sens où la Terre tourne, ou dans le sens inverse. Puisque les valeurs réelles du nombre π sont diverses, c’est donc qu’elles ne peuvent être le nombre unique et bien déterminé de la géométrie classique. C’est donc que l’Univers réel n’est pas conforme à cette géométrie.

Ces différences, dans l’exemple précédent, proviennent de ce que la Terre tourne. Au point de vue de la gravitation, la rotation terrestre a des effets centrifuges qui diminuent l’effet centripète de la pesanteur. Nous venons de voir d’ailleurs que pour celui de nos deux arpenteurs dont la vitesse annule la rotation terrestre, la valeur du nombre π est plus petite que pour l’observateur dont la vitesse semble doubler cette rotation. Les effets de la pesanteur étant inverses de ceux de la rotation, de la force centrifuge, il s’ensuit donc (et la démonstration en est aussi simple que la précédente) que l’effet de la pesanteur est de donner au nombre π une valeur plus petite que sa valeur classique.

En un mot, dans l’Univers les circonférences réelles tracées autour des masses gravitantes, autour des astres, ont par rapport à leur diamètre, une longueur plus petite que dans la géométrie euclidienne.

La différence est d’ailleurs en général assez faible. Mais elle n’est pas nulle. Si on place une masse de 1 000 kilogs au centre d’un cercle de 10 mètres de diamètre, le nombre π différera réellement de sa valeur euclidienne de moins d’un septillionième, c’est-à-dire de moins d’un millionième de milliardième de milliardième.

Au voisinage de masses formidables comme celles des astres, la différence pourra être beaucoup plus grande, ainsi que nous verrons. C’est de là surtout que proviennent les divergences entre la loi de gravitation de Newton et celles d’Einstein, divergences que l’observation a tranchées à l’avantage de celle-ci… Mais n’anticipons pas…

Nous avons montré dans un chapitre précédent que l’Univers réel des relativistes est un continuum à quatre dimensions et non pas à trois comme le croyait la science classique, et qu’au sein de ce continuum les distances dans l’espace et les distances dans le temps sont relatives. Seul a une valeur indépendante des conditions d’observation, seul a une réalité absolue… ou du moins objective, ce que nous avons appelé l’« Intervalle » des événements, synthèse des données spatiales et chronologiques.

Mais, pour avoir quatre dimensions, l’Univers, tel que nous l’avons discuté à propos de l’expérience de Michelson et de la relativité spéciale qui s’y rattache, n’en était pas moins un continuum euclidien, où la géométrie classique était vérifiée, où la lumière se propageait en ligne droite.

Il faut déchanter, nous venons de le voir. Non seulement il est à quatre dimensions, mais il n’est pas euclidien.

À quelle géométrie s’apparente le mieux, le plus commodément — pour parler comme Poincaré — cet Univers ? Probablement à celle de Riemann. Lorsqu’on trace, sur une feuille de papier étalée sur la table, un petit cercle au moyen d’un compas, le rayon de ce cercle est donné par l’écartement des pointes du compas et ce cercle est euclidien. Mais si on trace ce cercle sur un œuf, la pointe fixe du compas étant piquée au sommet de l’œuf, et si le rayon est de nouveau donné par l’écartement des pointes, le cercle tracé n’est plus euclidien. Le rapport de la circonférence décrite au rayon ainsi défini est plus petit que π, exactement comme il est plus petit que π lorsque le cercle est tracé autour d’un astre massif.

Eh bien ! il y a la même différence entre l’Univers réel non euclidien et un continuum euclidien, qu’entre notre feuille de papier plane et la surface de notre œuf, à cela près que ces surfaces ont deux dimensions tandis que l’Univers en a quatre.

L’espace à deux dimensions peut être plat comme la feuille de papier ou courbe comme la surface de l’œuf. On peut même, suivant qu’on laisse à plat ou qu’on roule une feuille de papier, faire que la géométrie qui s’applique aux figures tracées sur elle soit ou ne soit pas la géométrie euclidienne. D’une manière tout à fait analogue, l’espace à plus de deux dimensions peut être euclidien ou non.

En fait l’Univers, nous venons de le voir, n’est à peu près euclidien que dans les régions du monde très éloignées de toutes masses pesantes. Il n’est pas euclidien mais courbe au voisinage des astres et d’autant plus qu’on en est plus près.

La géométrie de l’espace courbe, telle que l’a fondée Riemann, est donc celle qui paraît le mieux s’appliquer à l’Univers réel. C’est elle qu’Einstein a employée dans ses calculs.

Pour démontrer tout à l’heure que les rayons lumineux tombent comme feraient des projectiles d’égale vitesse, nous sommes partis du raisonnement que voici :

Puisque l’« Intervalle » de deux événements est le même pour deux observateurs animés de vitesses uniformes et différentes, il est naturel de penser qu’il restera le même pour un troisième observateur dont la vitesse passe progressivement de celle du premier à celle du second, c’est-à-dire dont la vitesse est uniformément accélérée.

Il n’y a en effet aucune raison pour que les voyageurs d’un train animé d’une vitesse constante de 100 kilomètres à l’heure, par exemple, observent comme ceux d’un autre train faisant 50 kilomètres à l’heure, quelque chose d’« invariant » dans les phénomènes, tandis que cet « invariant » cesserait d’être tel pour les voyageurs d’un troisième train qui passe graduellement de la vitesse du premier train à celle du second. Admettre le contraire serait donner une situation privilégiée, dans l’Univers, aux deux premiers ou à leurs pareils. Or s’il est un domaine qui a eu réellement sa nuit du 4 août, un domaine où les privilèges injustifiés ont été supprimés par la physique nouvelle, c’est bien la contemplation du monde extérieur.

Ce privilège des observateurs en mouvement uniforme serait d’autant moins justifié que, si on va au fond des choses, il est bien difficile de définir exactement un mouvement uniforme.

Dire qu’un train a une vitesse uniforme de 100 kilomètres à l’heure, qu’est-ce que cela veut dire ? Cela veut dire que ce train possède cette vitesse par rapport à la voie, par rapport au sol. Mais par rapport à un observateur en ballon, ou qui passe dans un autre train, cette vitesse n’a plus la même valeur et elle peut cesser d’être une vitesse uniforme. Nous ne connaissons que des mouvements relatifs, et pour mieux dire des mouvements relatifs à tel ou tel objet matériel. Selon le choix de cet objet, de ce repère, une même vitesse pourra être uniforme ou accélérée. Finalement on voit qu’il faudrait revenir à l’hypothèse de l’espace absolu de Newton, pour pouvoir dire si une vitesse donnée est réellement uniforme ou accélérée.

Là est la raison profonde pour laquelle l’« Intervalle » einsteinien des choses, quantité invariable, « Invariant », doit rester le même par rapport à tous les observateurs quelles que soient leurs vitesses, et en particulier pour les observateurs animés de vitesses équivalentes, en un lieu donné, aux effets de la gravitation.

Mais alors les déductions que nous avons tirées de l’expérience de Michelson, relativement à l’aspect des phénomènes pour des observateurs en translations uniformes différentes, ne suffisent plus à nous rendre compte de toute la réalité. Elles ont besoin d’être complétées de sorte que l’invariant universel, l’« Intervalle » des choses, reste tel pour un observateur en mouvement quelconque.

Si je traverse une rue à une vitesse inouïe, mais d’un mouvement uniforme, son aspect général, par suite de la contraction due à ma vitesse, pourra être pour moi un peu différent de ce qu’il m’apparaîtrait si j’étais immobile[3]. Les maisons par exemple me paraîtront plus étroites en proportion de leur hauteur. Cependant l’aspect et les proportions générales des objets, seront à peu près les mêmes dans les deux cas, et auront quelque chose de commun. C’est ainsi que les becs de gaz m’apparaîtront plus minces, mais ils seront toujours droits.

Il en sera tout autrement si l’observateur est animé de mouvements variés quelconques, s’il est par exemple un ivrogne, un ivrogne merveilleux capable de tituber à des vitesses prodigieuses. Pour cet ivrogne, la rue qu’il parcourt aura un aspect tout nouveau. Les becs de gaz ne lui paraîtront plus droits, mais gondolés en zigzags qui reproduiront, en sens inverse, les zigzags qu’il décrit en titubant. Cela est si vrai que les caricaturistes ont l’habitude de représenter en lignes follement sinueuses les arbres, lampadaires et maisons vues par un ivrogne.

Notre homme sera d’ailleurs persuadé que les objets ont bien réellement la forme zigzagante qu’il leur voit, et que cette forme change à chacun de ses pas. Essayez de le persuader que c’est lui qui danse et non pas les réverbères ; essayez de lui montrer que c’est lui qui ne marche pas droit et non le chien qu’il tient… ou plutôt qui le tient en laisse. Il n’en croira rien, et ma foi, du point de vue de la relativité généralisée, il aura raison ni plus ni moins que vous.

Pourtant il y a quelque chose qui, dans l’aspect du monde doit rester commun à l’ivrogne et au buveur d’eau.

Si l’Univers tout entier était soudain noyé dans une masse de gélatine qui se prenne en gelée, et que l’on torde, comprime, déforme d’une manière quelconque cette masse gélatineuse, il y aurait quelque chose qui resterait pourtant inaltéré dans ce coagulum. Quel est ce quelque chose, quel est le calcul qu’il faut lui appliquer ? La réponse à ces questions constituait la dernière étape à franchir par Einstein pour pouvoir établir les équations de la gravitation et de la relativité généralisée.

Ici c’est le génie pénétrant d’Henri Poincaré qui a réellement tracé la voie. Il est d’autant plus nécessaire d’y insister que justice n’a pas été rendue sur ce point à l’illustre savant français.

Si tous les corps de l’Univers venaient à se dilater simultanément et dans la même proportion, nous n’aurions aucun moyen de le savoir. Nos instruments et nous-mêmes étant dilatés pareillement, nous ne nous apercevrions pas de ce formidable événement historique et cosmique, qui ne nous arracherait pas même un instant à nos petites contingences ridicules.

Il y a plus : non seulement les mondes seront indiscernables s’il se modifient de sorte que soit changée l’échelle des longueurs et des temps ; mais ils seront encore indiscernables si, à chaque point de l’un, correspond un point et un seul de l’autre et si, à chaque objet, à chaque événement du premier monde, en correspond un de même nature placé précisément au point correspondant du second. Or, les déformations successives et quelconques que l’on fait subir à la masse gélatineuse où nous avons incorporé plus haut et métaphoriquement l’Univers tout entier, nous fournissent précisément des mondes indiscernables à ce point de vue. Poincaré a la gloire d’avoir attiré l’attention là-dessus et montré que la relativité des choses doit être entendue dans ce sens très large.

Le continuum amorphe et déformable, où nous plaçons l’Univers, possède un certain nombre de propriétés exemptes de toute idée de mesure. L’étude de ces propriétés fait l’objet d’une géométrie particulière, d’une géométrie qualitative. Les théorèmes de cette géométrie ont ceci de singulier, qu’ils resteraient vrais même si les figures étaient copiées par un dessinateur malhabile qui altérerait grossièrement toutes les proportions et qui remplacerait les droites par des lignes irrégulières et sinueuses.

Telle est la géométrie que, suivant l’indication géniale de Poincaré, il sied d’appliquer à ce continuum à quatre dimensions et plus ou moins euclidien, selon ses points, qu’est l’Univers einsteinien. Cette géométrie est précisément celle qui énonce ce qu’il y a de commun entre les formes particulières des objets vues par notre ivrogne et notre buveur d’eau de tout à l’heure.

C’est dans cette voie, ou plutôt dans une voie parallèle à celle-là, qu’Einstein a finalement obtenu le succès. L’Univers étant un continuum plus ou moins incurvé, il a eu l’idée de lui appliquer la géométrie que Gauss a créée pour l’étude des surfaces à courbure variable et que Riemann a généralisée. C’est au moyen de cette géométrie particulière qu’on a exprimé le fait que l’« Intervalle » des événements est un invariant.

Voici maintenant une image qui, je pense, va nous guider au cœur même du problème de la gravitation et jusqu’à sa solution.

Considérons une surface à courbure variable, par exemple, la surface d’un coin de la France avec ses collines, ses montagnes, ses vallonnements. En parcourant ce pays en tous sens, nous pourrons aller en ligne droite tant que nous sommes en plaine. La ligne droite en plaine unie a ceci de remarquable qu’elle est le chemin le plus court entre deux points. Elle a aussi ceci de particulier qu’elle est, entre ces deux points, seule de son espèce et ayant sa longueur, tandis que l’on peut tracer un très grand nombre de lignes non droites réunissant aussi ces deux points, plus longue que la ligne droite mais toutes d’égale longueur.

Mais nous voici arrivés dans la région des collines. Il nous est maintenant impossible pour passer d’un point à un autre, séparés par une colline, de marcher suivant une ligne droite. Comme que nous fassions, notre trajet sera courbe. Mais parmi les divers chemins possibles qui nous mènent d’un point à l’autre par dessus la colline, il en est un, et un seul en général, qui est plus court que tous les autres, ainsi que nous pouvons le constater avec un cordeau. Ce chemin le plus court, seul de son espèce, est ce qu’on appelle la géodésique de la surface traversée.

Pareillement, pour aller de Lisbonne à New-York, aucun navire ne peut marcher en ligne droite. Tous doivent faire un trajet incurvé, à cause de la rotondité terrestre. Mais parmi les trajets incurvés possibles, il en est un privilégié, plus court que tous les autres, c’est celui qui suit la direction d’un grand cercle de la Terre. Pour aller de Lisbonne à New-York, qui sont pourtant à peu près sur le même parallèle, les vaisseaux se gardent bien de cingler droit vers l’Ouest dans la direction des parallèles. Ils cinglent un peu vers le Nord-Ouest, de façon à arriver à New-York en venant du Nord-Est, et à suivre à peu près un grand cercle terrestre. Sur notre globe, comme sur toutes les sphères, la géodésique, le plus court chemin entre deux points, est l’arc de grand cercle passant par ces deux points.

Ainsi sur toutes les surfaces courbes, on peut, d’un point à un autre, tracer une ligne privilégiée de longueur minima, une géodésique qui est, sur ces surfaces, l’analogue de la ligne droite dans le plan.

Eh bien ! l’« Intervalle » de deux points dans l’Univers à quatre dimensions (à un signe algébrique près) représente exactement la géodésique, la ligne de trajet minimum tracée dans l’Univers entre ces deux points. Là où l’Univers est incurvé, cette géodésique est une ligne courbe. Là où l’Univers est à peu près euclidien, elle est une ligne droite.

On me dira à ce propos qu’il est bien difficile de se représenter comme incurvé un espace à trois, et a fortiori à quatre dimensions. J’en conviens. Nous avons vu qu’il est déjà assez difficile de se représenter l’espace à quatre dimensions même s’il n’est pas incurvé.

Qu’est-ce que cela prouve ? Il y a dans la nature bien d’autres choses que nous ne pouvons pas nous représenter, c’est-à-dire dont nous ne pouvons pas nous former une image visuelle. Les ondes hertziennes, les rayons X, les ondes ultra-violettes en existent-elles moins parce que nous ne pouvons pas nous les figurer, ou que du moins nous ne le pouvons qu’en leur attribuant une forme visible qui précisément leur manque. Certes, c’est une des faiblesses de l’infirmité humaine que de ne rien concevoir que ce qui est imagé. De là cette tendance qui nous porte à tout visualiser (si j’ose risquer ici ce mot inélégant, mais expressif).

Revenons donc à nos géodésiques. Celles-ci nous pouvons très bien nous les représenter, car elles sont dans l’Univers, en dépit de ses quatre dimensions, des lignes à une seule dimension pareilles à toutes les lignes que nous connaissons.

L’existence des géodésiques, des lignes de plus courte distance, va nous dévoiler avec éclat la liaison qui, dans le monde euclidien de la science classique, n’était pas apparue, entre l’inertie et la pesanteur. De là était né le distinguo newtonien entre le principe d’inertie et la force gravitante.

Pour nous relativistes, ce distinguo n’est maintenant plus nécessaire. Les masses matérielles, comme la lumière, se propagent en ligne droite loin de tout champ de gravitation, et en ligne courbe près des masses gravitantes. Par raison de symétrie, un point matériel libre ne peut suivre dans l’Univers qu’une géodésique.

Si alors on considère que la force gravitante invoquée par Newton n’existe pas — et une telle action à distance est bien hypothétique, — si on considère que dans l’espace vide il n’y a que des objets librement abandonnés à eux-mêmes, on est irrésistiblement amené à l’énoncé suivant qui réunit sous une forme simple ces sœurs autrefois séparées, l’inertie et la pesanteur. Tout mobile abandonné librement à lui-même décrit dans l’Univers une géodésique.

Loin des astres massifs, cette géodésique est une ligne droite parce que l’Univers y est à peu près euclidien. Près des astres elle est une ligne courbe, parce que l’Univers n’y est plus euclidien.

Admirable conception et qui réunit sous une seule règle le principe d’inertie et la loi de la pesanteur ! Synthèse éclatante de la mécanique et de la gravitation, par quoi disparaît la sécession qui naguère en faisait des sciences séparées et incommunicantes !

Dans cette théorie hardie et simple, la gravitation n’est plus une force. Si les planètes décrivent des courbes c’est parce que, près du Soleil, comme près de toute concentration de matière, l’Univers est incurvé. Le plus court chemin d’un point à un autre est une ligne qui ne nous paraît droite, pauvres pygmées que nous sommes, que parce que nous la mesurons avec des règles très petites et sur de faibles longueurs. Si nous pouvions suivre cette ligne sur des millions de kilomètres et pendant un temps suffisant, nous la trouverions infléchie.

En somme, et si on veut me permettre une image qui n’est qu’une analogie, les planètes décrivent des courbes parce qu’elles avancent suivant le chemin le plus facile dans un univers incurvé, de même qu’au vélodrome les cyclistes arrivant au virage n’ont pas besoin de tourner leur guidon, mais n’ont qu’à pédaler droit devant eux, la pente incurvée les obligeant à tourner naturellement. Au vélodrome, comme dans le système solaire, la cour­ bure est d’autant plus marquée qu’on est plus près du bord interne de la piste.

Maintenant il ne reste plus qu’à assigner à l’Univers, à l’espace-temps, une courbure telle, en ses divers points, que les géodésiques représentent exactement les trajectoires des planètes et des corps qui tombent, en admettant que la courbure de l’Univers est causée en chaque point par les masses matérielles présentes ou voisines.

Dans ce calcul, il faut tenir compte aussi de ce que l’« Intervalle », c’est-à-dire la portion de géodésique entre deux points très voisins, doit être un invariant quel que soit l’observateur. Il arrivera donc que, pour l’ivrogne titubant que nous avons déjà invoqué, une même géodésique sera une ligne courbe ou même sinueuse alors qu’elle est une ligne droite pour un observateur immobile. La longueur de cette ligne, qu’on la voie droite ou courbe, reste la même.

Tenu compte de tout cela, et grâce à des prodiges d’habileté mathématique dont nous avens suffisamment indiqué l’objet, Einstein arrive à exprimer sous une forme complètement invariante, la loi de gravitation.

En calculant par la loi de Newton l’« Intervalle » de deux événements astronomiques, par exemple de deux chutes successives de bolides sur le Soleil, on trouverait que cet « Intervalle » n’a pas exactement la même valeur pour des observateurs animés de vitesse différentes et quelconques.

Avec la forme nouvelle donnée par Einstein à la loi, cette différence n’existe plus. Les deux lois sont d’ailleurs très peu différentes, et il fallait s’y attendre étant donnée l’exactitude avec laquelle depuis deux siècles la loi de Newton a été vérifiée par les astronomes. Le perfectionnement apporté par Einstein à la loi de Newton revient en somme (si nous voulons employer le vieux langage de l’Univers euclidien), à considérer celle-ci comme exacte, sous la condition que les distances des planètes au Soleil soient mesurées avec un mètre dont la longueur diminue légèrement en se rapprochant du Soleil.

Il est étonnant que Newton et Einstein arrivent à exprimer sous une forme à peu près identique les mouvements des astres gravitants, car leurs points de départs sont extrêmement différents.

Newton part de l’hypothèse de l’espace absolu, des lois expérimentales du mouvement des planètes exprimées dans les lois de Képler, et de l’assimilation de l’attraction gravitationnelle à une force proportionnelle à la masse. Einstein, au contraire fait ses calculs en partant des conditions d’invariance que nous avons indiquées. Il procède en quelque sorte du postulat philosophique, du principe, du besoin d’affirmer que les lois de la nature sont invariantes, indépendantes du point de vue, irrélatives, si j’ose dire. Einstein abandonne même l’hypothèse qui attribuait la courbure des trajectoires gravitationnelles à une force attractive distincte.

Pourtant, parti de ce point de vue totalement différent du point de vue newtonien, et au premier abord moins surchargé d’hypothèses, Einstein arrive à une loi de gravitation qui est presque identique à la loi de Newton.

Ce presque a un prodigieux intérêt, car il va nous permettre de vérifier quelle est la loi exacte : celle de Newton ou celle d’Einstein. Si elles conduisent au même résultat tant qu’il s’agit de vitesses faibles relativement à celle de la lumière, les deux lois donnent des résultats un peu divergents lorsqu’il s’agit de vitesses très grandes. Nous avons vu déjà que la lumière elle-même subit, près du Soleil, une déviation exactement conforme à la loi d’Einstein, et que la loi de Newton au contraire ne prévoyait pas telle.

Mais il y a une autre divergence entre les deux lois. D’après celle de Newton, les planètes décrivent autour du Soleil des ellipses qui — si on néglige les petites perturbations dues aux autres planètes — ont une position rigoureusement fixe.

Posons sur une table une tranche de citron coupée dans la longueur du fruit et imaginons que sur la voûte de la vaste salle hémisphérique au milieu de laquelle nous supposons cette table, soient peintes les principales étoiles, les constellations boréales. Notre tranche de citron possède à peu près la forme d’une ellipse, et si nous assimilons le Soleil à un des pépins, elle peut figurer ainsi l’orbite d’une planète dans l’Univers stellaire. La loi de Newton dit que — toutes corrections faites — l’orbite planétaire garde une orientation fixe parmi les étoiles, durant que la planète en parcourt indéfiniment le tour. Cela veut dire que notre tranche de citron reste immobile.

Au contraire, la loi d’Einstein affirme que l’ellipse orbitale tourne avec beaucoup de lenteur parmi les étoiles tandis que la planète la parcourt. Cela veut dire que notre tranche de citron doit tourner légèrement sur la table de manière que les deux sommets du citron ne restent pas en face des mêmes étoiles peintes sur le mur.

Si on calcule, par la loi d’Einstein, la quantité dont doivent tourner ainsi les orbites elliptiques des planètes on trouve que cette quantité est inobservable à cause de sa petitesse, sauf pourtant pour une planète, la plus rapide de toutes, Mercure.

Mercure accomplit une révolution complète autour du Soleil en 88 jours environ, et la loi d’Einstein montre que son orbite doit tourner en même temps d’un petit angle qui au bout d’un siècle monte à 43 secondes d’arc (43″). Si petite qu’elle soit, cette quantité est de celles que les astronomes avec leurs méthodes raffinées mesurent facilement.

Précisément, dès le siècle passé on avait remarqué que, seule de toutes les planètes, Mercure présentait dans son mouvement une petite anomalie inexplicable par la loi de Newton. Le Verrier fit à ce sujet des calculs prodigieux, pensant que cette anomalie pouvait être due à l’attraction d’un astre ignoré, situé entre Mercure et le Soleil. Il espérait ainsi découvrir par le calcul une planète intra-mercurielle de même qu’il avait découvert la planète transuranienne : Neptune.

Mais jamais l’observation ne révéla la planète annoncée et l’anomalie du mouvement de Mercure continua à faire le désespoir des astronomes. Or en quoi consistait cette anomalie ? Précisément en une rotation anormale de l’orbite planétaire, rotation qui, d’après les calculs de Le Verrier, est de 43 secondes d’arc par siècle. Exactement le chiffre qu’on déduit, sans aucune hypothèse, de la loi de gravitation d’Einstein !

Il est vrai que d’après les calculs récents de Grossmann, il résulte des observations astronomiques réunies par Newcomb que la valeur effectivement constatée du déplacement séculaire du périhélie de Mercure est, non pas de 43″ comme le croyait Le Verrier, mais de 38″ tout au plus. L’accord avec le chiffre théorique d’Einstein pour n’être plus parfait (ce qui était bien extraordinaire) n’en est pas moins excellent, et en deçà des incertitudes de l’observation.

La loi d’Einstein a la même exactitude que celle de Newton tant qu’il s’agit de planètes lentes. Mais pour les astres plus rapides dont l’observation permet de connaître le mouvement avec une précision supérieure, la loi de Newton est en défaut, celle d’Einstein triomphe encore.

Ce perfectionnement de ce qu’on croyait parfait — l’œuvre de Newton — est une belle victoire de l’esprit humain.

L’astronomie, la mécanique céleste y gagnent une précision et une puissance prophétique accrues. Sur les ailes triomphales du calcul, nous savons maintenant mieux que naguère suivre et précéder les orbes d’or des astres, par delà les siècles et dans l’espace démesuré.

Il existe encore un autre criterium de la loi gravitationnelle d’Einstein. Si celle-ci est exacte, la durée d’un phénomène donné augmente, selon Einstein, quand le champ de gravitation devient plus intense. Par conséquent, la durée de vibration d’un atome donné doit être plus grande sur le Soleil que sur la Terre. Les longueurs d’onde des raies spectrales d’un même élément chimique doivent être un peu plus grandes dans la lumière solaire, que dans une lumière d’origine terrestre. C’est ce que des expériences récentes tendent à établir. Mais ici la vérification est moins nette que dans le cas de Mercure, car d’autres causes peuvent intervenir pour modifier les longueurs d’onde de la lumière.

Au total, la puissante synthèse qu’Einstein a appelée la théorie de la Relativité généralisée, et dont nous venons d’embrasser très vite les grandes lignes, est vraiment une haute et belle construction mentale en même temps qu’un splendide outil à explorer le mystère des choses.

Savoir, c’est prévoir. Elle prévoit cette théorie, et mieux que ses aînées. Elle joint pour la première fois en un faisceau unique la gravitation et la mécanique. Elle montre comment la matière impose au monde extérieur une courbure dont la gravitation n’est que l’indice, de même que les algues qu’on voit flotter sur la mer ne sont que les signes du courant qui les entraîne.

Quelques modifications qu’elle puisse subir dans l’avenir — car tout dans la science reste à jamais perfectible — elle a manifesté, parmi les lois de la nature, un peu plus de cette harmonie qui naît de l’Unité.

Mais j’en ai dit assez là-dessus, si j’ai pu faire comprendre, ou plutôt faire sentir ces choses, sans m’aider de cette pure lumière que la Géométrie projette sur l’invisible.

  1. Il va sans dire que dans tout ceci le rayon lumineux est censé se propager dans un milieu homogène.
  2. Nous supposons bien entendu la Terre parfaitement circulaire et sans aspérités.
  3. Il va sans dire qu’on suppose ici l’observateur muni d’une rétine à impressions instantanées.