Page:Revue de métaphysique et de morale - 13.djvu/829

La bibliothèque libre.
Le texte de cette page a été corrigé et est conforme au fac-similé.
819
H. POINCARÉ.LES MATHÉMATIQUES ET LA LOGIQUE.

Les autres axiomes de la géométrie ne suffisent pas pour définir complètement la distance ; la distance sera alors, par définition, parmi toutes les grandeurs qui satisfont à ces autres axiomes, celle qui est telle que le postulatum d’Euclide soit vrai.

Eh bien, les logiciens admettent pour le principe d’induction complète, ce que j’admets pour le postulatum d’Euclide, ils ne veulent y voir qu’une définition déguisée.

Mais pour qu’on ait ce droit, il y a deux conditions à remplir. Stuart Mill disait que toute définition implique un axiome, celui par lequel on affirme l’existence de l’objet défini. À ce compte, ce ne serait plus l’axiome qui pourrait être une définition déguisée, ce serait au contraire la définition qui serait un axiome déguisé. Stuart Mill entendait le mot existence dans un sens matériel et empirique ; il voulait dire qu’en définissant le cercle, on affirme qu’il y a des choses rondes dans la nature.

Sous cette forme, son opinion est inadmissible. Les mathématiques sont indépendantes de l’existence des objets matériels ; en mathématiques le mot exister ne peut avoir qu’un sens, il signifie exempt de contradiction. Ainsi rectifiée, la pensée de Stuart Mill devient exacte ; en définissant un objet, on affirme que la définition n’implique pas contradiction.

Si nous avons donc un système de postulats, et si nous pouvons démontrer que ces postulats n’impliquent pas contradiction, nous aurons le droit de les considérer comme représentant la définition de l’une des notions qui y figurent. Si nous ne pouvons pas démontrer cela, il faut que nous l’admettions sans démonstration et cela sera alors un axiome ; de sorte que si nous voulions chercher la définition sous le postulat, nous retrouverions encore l’axiome sous la définition.

Le plus souvent, pour démontrer qu’une définition n’implique pas contradiction, on procède par l’exemple, on cherche à former un exemple d’un objet satisfaisant à la définition. Prenons le cas d’une définition par postulats ; nous voulons définir une notion , et nous disons que, par définition, un , c’est tout objet pour lequel certains postulats sont vrais. Si nous pouvons démontrer directement que tous ces postulats sont vrais d’un certain objet , la définition sera justifiée ; l’objet sera un exemple d’un . Nous serons certains que les postulats ne sont pas contradictoires, puisqu’il y a des cas où ils sont vrais tous à la fois.