Essai philosophique sur les probabilités/1a
Tous les événemens, ceux mêmes qui par leur petitesse, semblent ne pas tenir aux grandes lois de la nature, en sont une suite aussi nécessaire que les révolutions du Soleil. Dans l’ignorance des liens qui les unissent au système entier de l’univers, on les a fait dépendre des causes finales, ou du hasard, suivant qu’ils arrivaient et se succédaient avec régularité, ou sans ordre apparent ; mais ces causes imaginaires ont été successivement reculées avec les bornes de nos connaissances, et disparaissent entièrement devant la saine philosophie, qui ne voit en elles que l’expression de l’ignorance où nous sommes des véritables causes.
Les événemens actuels ont, avec les précédens, une liaison fondée sur le principe évident, qu’une chose ne peut pas commencer d’être, sans une cause qui la produise. Cet axiome, connu sous le nom de principe de la raison suffisante, s’étend aux actions mêmes que l’on juge indifférentes. La volonté la plus libre ne peut sans un motif déterminant, leur donner naissance ; car si toutes les circonstances de deux positions étant exactement semblables, elle agissait dans l’une et s’abstenait d’agir dans l’autre, son choix serait un effet sans cause : elle serait alors, dit Leibnitz, le hasard aveugle des épicuriens. L’opinion contraire est une illusion de l’esprit qui, perdant de vue les raisons fugitives du choix de la volonté dans les choses indifférentes, se persuade qu’elle s’est déterminée d’elle-même et sans motifs.
Nous devons donc envisager l’état présent de l’univers, comme l’effet de son état antérieur, et comme la cause de celui qui va suivre. Une intelligence qui, pour un instant donné, connaîtrait toutes les forces dont la nature est animée, et la situation respective des êtres qui la composent, si d’ailleurs elle était assez vaste pour soumettre ces données à l’analyse, embrasserait dans la même formule les mouvemens des plus grands corps de l’univers et ceux du plus léger atome : rien ne serait incertain pour elle, et l’avenir comme le passé, serait présent à ses yeux. L’esprit humain offre, dans la perfection qu’il a su donner à l’Astronomie, une faible esquisse de cette intelligence. Ses découvertes en Mécanique et en Géométrie, jointes à celle de la pesanteur universelle, l’ont mis à portée de comprendre dans les mêmes expressions analytiques, les états passés et futurs du système du monde. En appliquant la même méthode à quelques autres objets de ses connaissances, il est parvenu à ramener à des lois générales les phénomènes observés, et à prévoir ceux que des circonstances données doivent faire éclore. Tous ces efforts dans la recherche de la vérité, tendent à le rapprocher sans cesse de l’intelligence que nous venons de concevoir, mais dont il restera toujours infiniment éloigné. Cette tendance, propre à l’espèce humaine, est ce qui la rend supérieure aux animaux ; et ses progrès en ce genre, distinguent les nations et les siècles, et font leur véritable gloire.
Rappelons-nous qu’autrefois, et à une époque qui n’est pas encore bien reculée, une pluie ou une sécheresse extrême, une comète traînant après elle une queue fort étendue, les éclipses, les aurores boréales et généralement tous les phénomènes extraordinaires étaient regardés comme autant de signes de la colère céleste. On invoquait le ciel pour détourner leur funeste influence. On ne le priait point de suspendre le cours des planètes et du Soleil : l’observation eût bientôt fait sentir l’inutilité de ces prières. Mais comme ces phénomènes arrivant et disparaissant à de longs intervalles, semblaient contrarier l’ordre de la nature, on supposait que le ciel irrité par les crimes de la terre, les faisait naître pour annoncer ses vengeances. Ainsi la longue queue de la comète de 1456 répandit la terreur dans l’Europe, déjà consternée par les succès rapides des Turcs qui venaient de renverser le Bas-Empire. Cet astre, après quatre de ses révolutions, a excité parmi nous un intérêt bien différent. La connaissance des lois du système du monde, acquise dans cet intervalle, avait dissipé les craintes enfantées par l’ignorance des vrais rapports de l’homme avec l’univers ; et Halley ayant reconnu l’identité de cette comète, avec celles des années 1531, 1607 et 1682, annonça son retour prochain pour la fin de 1758 ou le commencement de 1759. Le monde savant attendit avec impatience, ce retour qui devait confirmer l’une des plus grandes découvertes que l’on eût faites dans les sciences, et accomplir la prédiction de Sénèque, lorsqu’il a dit, en parlant de la révolution de ces astres qui descendent d’une énorme distance : « Le jour viendra que par une étude suivie, de plusieurs siècles, les choses actuellement cachées paraîtront avec évidence ; et la postérité s’étonnera que des vérités si claires nous aient échappé. » Clairaut entreprit alors de soumettre à l’analyse les perturbations que la comète avait éprouvées par l’action des deux plus grosses planètes, Jupiter et Saturne ; après d’immenses calculs, il fixa son prochain passage au périhélie, vers le commencement d’avril 1759, ce que l’observation ne tarda pas à vérifier. La régularité que l’Astronomie nous montre dans le mouvement des comètes, a lieu sans aucun doute, dans tous les phénomènes. La courbe décrite par une simple molécule d’air ou de vapeurs, est réglée d’une manière aussi certaine, que les orbites planétaires : il n’y a de differences entre elles, que celle qu’y met notre ignorance.
La probabilité est relative en partie à cette ignorance, en partie à nos connaissances. Nous savons que sur trois ou un plus grand nombre d’évènemens, un seul doit arriver ; mais rien ne porte à croire que l’un d’eux arrivera plutôt que les autres. Dans cet état d’indécision, il nous est impossible de prononcer avec certitude sur leur arrivée. Il est cependant probable qu’un de ces évènemens pris à volonté, n’arrivera pas, parce que nous voyons plusieurs cas également possibles qui excluent son existence, tandis qu’un seul la favorise.
La théorie des hasards consiste à réduire tous les évènemens du même genre, à un certain nombre de cas également possibles, c’est-à-dire tels que nous soyons également indécis sur leur existence, et à déterminer le nombre de cas favorables à l’évènement dont on cherche la probabilité. Le rapport de ce nombre à celui de tous les cas possibles, est la mesure de cette probabilité qui n’est ainsi qu’une fraction dont le numérateur est le nombre des cas favorables, et dont le dénominateur est le nombre de tous les cas possibles.
La notion précédente de la probabilité suppose qu’en faisant croître dans le même rapport, le nombre des cas favorables, et celui de tous les cas possibles, la probabilité reste la même. Pour s’en convaincre, que l’on considère deux urnes A et B, dont la première contienne quatre boules blanches et deux noires, et dont la seconde ne renferme que deux boules blanches et une noire. On peut imaginer les deux boules noires de la première urne, attachées à un fil qui se rompt au moment où l’on saisit l’une d’elles pour l’extraire, et les quatre boules blanches formant deux systèmes semblables. Toutes les chances qui feront saisir l’une des boules du système noir, amèneront une boule noire. Si l’on conçoit maintenant que les fils qui unissent les boules, ne se rompent point, il est clair que le nombre des chances possibles ne changera pas, non plus que celui des chances favorables à l’extraction des boules noires ; seulement, on tirera de l’urne deux boules à la fois ; la probabilité d’extraire une boule noire de l’urne sera donc la même qu’auparavant. Mais alors on a évidemment le cas de l’urne B, avec la seule différence, que les trois boules de cette dernière urne soient remplacées par trois systèmes de deux boules invariablement unies.
Quand tous les cas sont favorables à un évènement, sa probabilité se change en certitude, et son expression devient égale à l’unité. Sous ce rapport, la certitude et la probabilité sont comparables, quoiqu’il y ait une différence essentielle entre les deux états de l’esprit, lorsqu’une vérité lui est rigoureusement démontrée, ou lorsqu’il aperçoit encore une petite source d’erreur.
Dans les choses qui ne sont que vraisemblables, la différence des données que chaque homme a sur elles, est une des causes principales de la diversité des opinions que l’on voit régner sur les mêmes objets. Supposons, par exemple, que l’on ait trois urnes A, B, C, dont une ne contienne que des boules noires, tandis que les deux autres ne renferment que des boules blanches, on doit tirer une boule de l’urne C, et l’on demande la probabilité que cette boule sera noire. Si l’on ignore quelle est celle des trois urnes qui ne renferme que des boules noires, en sorte que l’on n’ait aucune raison de croire qu’elle est plutôt C que B ou A ; ces trois hypothèses paraîtront également possibles, et comme une boule noire ne peut être extraite que dans la première hypothèse, la probabilité de l’extraire est égale à un tiers. Si l’on sait que l’urne A ne contient que des boules blanches, l’indécision ne porte plus alors que sur les urnes B et C, et la probabilité que la boule extraite de l’urne C sera noire est un demi. Enfin, cette probabilité se change en certitude, si l’on est assuré que les urnes A et B ne contiennent que des boules blanches.
C’est ainsi que le même fait, récité devant une nombreuse assemblée, obtient divers degrés de croyance, suivant l’étendue des connaissances des auditeurs. Si l’homme qui le rapporte en est intimement persuadé, et si, par son état et par son caractère, il inspire une grande confiance ; son récit, quelque extraordinaire qu’il soit, aura, pour les auditeurs dépourvus de lumières, le même degré de vraisemblance qu’un fait ordinaire rapporté par le même homme, et ils lui ajouteront une foi entière. Cependant si quelqu’un d’eux sait que le même fait est rejeté par d’autres hommes également respectables, il sera dans le doute, et le fait sera jugé faux par les auditeurs éclairés qui le trouveront contraire, soit à des faits bien avérés, soit aux lois immuables de la nature.
C’est à l’influence de l’opinion de ceux que la multitude juge les plus instruits, et à qui elle a coutume de donner sa confiance sur les plus importans objets de la vie, qu’est due la propagation de ces erreurs qui, dans les temps d’ignorance, ont couvert la face du monde. La Magie et l’Astrologie nous en offrent deux grands exemples. Ces erreurs inculquées dès l’enfance, adoptées sans examen, et n’ayant pour base que la croyance universelle, se sont maintenues pendant très long-temps, jusqu’à ce qu’enfin le progrès des sciences les ait détruites dans l’esprit des hommes éclairés, dont ensuite l’opinion les a fait disparaître chez le peuple même, par le pouvoir de l’imitation et de l’habitude, qui les avait si généralement répandues. Ce pouvoir, le plus puissant ressort du monde moral, établit et conserve dans toute une nation des idées entièrement contraires à celles qu’il maintient ailleurs avec le même empire. Quelle indulgence ne devons-nous donc pas avoir pour les opinions différentes des nôtres, puisque cette différence ne dépend souvent que des points de vue divers où les circonstances nous ont placés ! Éclairons ceux que nous ne jugeons pas suffisamment instruits ; mais auparavant, examinons sévèrement nos propres opinions, et pesons avec impartialité leurs probabilités respectives.
La différence des opinions dépend encore de la manière dont on détermine l’influence des données qui sont connues. La théorie des probabilités tient à des considérations si délicates, qu’il n’est pas surprenant qu’avec les mêmes données, deux personnes trouvent des résultats différens, surtout dans les questions très compliquées. Expliquons ici les principes généraux de cette Théorie.