Texte validé

L’Origine des espèces/Chapitre IV

La bibliothèque libre.
Aller à la navigation Aller à la recherche
L’Origine des espèces (1859 (1re éd.) — 1872 (6e éd., traduite en 1876))
Traduction par Edmond Barbier.
Librairie C. Reinwald, Schleicher Frères éditeurs (p. 85-143).


CHAPITRE IV.

la sélection naturelle ou la persistance du plus apte.

La sélection naturelle ; comparaison de son pouvoir avec le pouvoir sélectif de l’homme ; son influence sur les caractères a peu d’importance ; son influence à tous les âges et sur les deux sexes. — Sélection sexuelle. — De la généralité des croisements entre les individus de la même espèce. — Circonstances favorables ou défavorables à la sélection naturelle, telles que croisements, isolement, nombre des individus. — Action lente. — Extinction causée par la sélection naturelle. — Divergence des caractères dans ses rapports avec la diversité des habitants d’une région limitée et avec l’acclimatation. — Action de la sélection naturelle sur les descendants d’un type commun résultant de la divergence des caractères. — La sélection naturelle explique le groupement de tous les êtres organisés ; les progrès de l’organisme ; la persistance des formes inférieures ; la convergence des caractères ; la multiplication indéfinie des espèces. — Résumé.

Quelle influence a, sur la variabilité, cette lutte pour l’existence que nous venons de décrire si brièvement ? Le principe de la sélection, que nous avons vu si puissant entre les mains de l’homme, s’applique-t-il à l’état de nature ? Nous prouverons qu’il s’applique de façon très efficace. Rappelons-nous le nombre infini de variations légères, de simples différences individuelles, qui se présentent chez nos productions domestiques et, à un degré moindre, chez les espèces à l’état sauvage ; rappelons-nous aussi la force des tendances héréditaires. À l’état domestique, on peut dire que l’organisme entier devient en quelque sorte plastique. Mais, comme Hooker et Asa Gray l’ont fait si bien remarquer, la variabilité que nous remarquons chez toutes nos productions domestiques n’est pas l’œuvre directe de l’homme. L’homme ne peut ni produire ni empêcher les variations ; il ne peut que conserver et accumuler celles qui se présentent. Il expose, sans en avoir l’intention, les êtres organisés à de nouvelles conditions d’existence, et des variations en résultent ; or, des changements analogues peuvent, doivent même se présenter à l’état de nature. Qu’on se rappelle aussi combien sont complexes, combien sont étroits les rapports de tous les êtres organisés les uns avec les autres et avec les conditions physiques de la vie, et, en conséquence, quel avantage chacun d’eux peut retirer de diversités de conformation infiniment variées, étant données des conditions de vie différentes. Faut-il donc s’étonner, quand on voit que des variations utiles à l’homme se sont certainement produites, que d’autres variations, utiles à l’animal dans la grande et terrible bataille de la vie, se produisent dans le cours de nombreuses générations ? Si ce fait est admis, pouvons-nous douter (il faut toujours se rappeler qu’il naît beaucoup plus d’individus qu’il n’en peut vivre) que les individus possédant un avantage quelconque, quelque léger qu’il soit d’ailleurs, aient la meilleure chance de vivre et de se reproduire ? Nous pouvons être certains, d’autre part, que toute variation, si peu nuisible qu’elle soit à l’individu ; entraîne forcément la disparition de celui-ci. J’ai donné le nom de sélection naturelle ou de persistance du plus apte à cette conservation des différences et des variations individuelles favorables et à cette élimination des variations nuisibles. Les variations insignifiantes, c’est-à-dire qui ne sont ni utiles ni nuisibles à l’individu, ne sont certainement pas affectées par la sélection naturelle et demeurent à l’état d’éléments variables, tels que peut-être ceux que nous remarquons chez certaines espèces polymorphes, ou finissent par se fixer, grâce à la nature de l’organisme et à celle des conditions d’existence.

Plusieurs écrivains ont mal compris, ou mal critiqué, ce terme de sélection naturelle. Les uns se sont même imaginé que la sélection naturelle amène la variabilité, alors qu’elle implique seulement la conservation des variations accidentellement produites, quand elles sont avantageuses à l’individu dans les conditions d’existence où il se trouve placé. Personne ne proteste contre les agriculteurs, quand ils parlent des puissants effets de la sélection effectuée par l’homme ; or, dans ce cas, il est indispensable que la nature produise d’abord les différences individuelles que l’homme choisit dans un but quelconque. D’autres ont prétendu que le terme sélection implique un choix conscient de la part des animaux qui se modifient, et on a même argué que, les plantes n’ayant aucune volonté, la sélection naturelle ne leur est pas applicable. Dans le sens littéral du mot, il n’est pas douteux que le terme sélection naturelle ne soit un terme erroné ; mais, qui donc a jamais critiqué les chimistes, parce qu’ils se servent du terme affinité élective en parlant des différents éléments ? Cependant, on ne peut pas dire, à strictement parler, que l’acide choisisse la base avec laquelle il se combine de préférence. On a dit que je parle de la sélection naturelle comme d’une puissance active ou divine ; mais qui donc critique un auteur lorsqu’il parle de l’attraction ou de la gravitation, comme régissant les mouvements des planètes ? Chacun sait ce que signifient, ce qu’impliquent ces expressions métaphoriques nécessaires à la clarté de la discussion. Il est aussi très difficile d’éviter de personnifier le nom nature ; mais, par nature, j’entends seulement l’action combinée et les résultats complexes d’un grand nombre de lois naturelles ; et, par lois, la série de faits que nous avons reconnus. Au bout de quelque temps on se familiarisera avec ces termes et on oubliera ces critiques inutiles.

Nous comprendrons mieux l’application de la loi de la sélection naturelle en prenant pour exemple un pays soumis à quelques légers changements physiques, un changement climatérique, par exemple. Le nombre proportionnel de ses habitants change presque immédiatement aussi, et il est probable que quelques espèces s’éteignent. Nous pouvons conclure de ce que nous avons vu relativement aux rapports complexes et intimes qui relient les uns aux autres les habitants de chaque pays, que tout changement dans la proportion numérique des individus d’une espèce affecte sérieusement toutes les autres espèces, sans parler de l’influence exercée par les modifications du climat. Si ce pays est ouvert, de nouvelles formes y pénètrent certainement, et cette immigration tend encore à troubler les rapports mutuels de ses anciens habitants. Qu’on se rappelle, à ce sujet, quelle a toujours été l’influence de l’introduction d’un seul arbre ou d’un seul mammifère dans un pays. Mais s’il s’agit d’une île, ou d’un pays entouré en partie de barrières infranchissables, dans lequel, par conséquent, de nouvelles formes mieux adaptées aux modifications du climat ne peuvent pas facilement pénétrer, il se trouve alors, dans l’économie de la nature, quelque place qui serait mieux remplie si quelques-uns des habitants originels se modifiaient de façon ou d’autre, puisque, si le pays était ouvert, ces places seraient prises par les immigrants. Dans ce cas, de légères modifications, favorables à quelque degré que ce soit aux individus d’une espèce, en les adaptant mieux à de nouvelles conditions ambiantes, tendraient à se perpétuer, et la sélection naturelle aurait ainsi des matériaux disponibles pour commencer son œuvre de perfectionnement.

Nous avons de bonnes raisons de croire, comme nous l’avons démontré dans le premier chapitre, que les changements des conditions d’existence tendent à augmenter la faculté à la variabilité. Dans les cas que nous venons de citer, les conditions d’existence ayant changé, le terrain est donc favorable à la sélection naturelle, car il offre plus de chances pour la production de variations avantageuses, sans lesquelles la sélection naturelle ne peut rien. Il ne faut jamais oublier que, dans le terme variation, je comprends les simples différences individuelles. L’homme peut amener de grands changements chez ses animaux domestiques et chez ses plantes cultivées, en accumulant les différences individuelles dans une direction donnée ; la sélection naturelle peut obtenir les mêmes résultats, mais beaucoup plus facilement, parce que son action peut s’étendre sur un laps de temps beaucoup plus considérable. Je ne crois pas, d’ailleurs, qu’il faille de grands changements physiques, tels que des changements climatériques, ou qu’un pays soit particulièrement isolé et à l’abri de l’immigration, pour que des places libres se produisent et que la sélection naturelle les fasse occuper en améliorant quelques-uns des organismes variables. En effet, comme tous les habitants de chaque pays luttent à armes à peu près égales, il peut suffire d’une modification très légère dans la conformation ou dans les habitudes d’une espèce pour lui donner l’avantage sur toutes les autres. D’autres modifications de la même nature pourront encore accroître cet avantage, aussi longtemps que l’espèce se trouvera dans les mêmes conditions d’existence et jouira des mêmes moyens pour se nourrir et pour se défendre. On ne pourrait citer aucun pays dont les habitants indigènes soient actuellement si parfaitement adaptés les uns aux autres, si absolument en rapport avec les conditions physiques qui les entourent, pour ne laisser place à aucun perfectionnement ; car, dans tous les pays, les espèces natives ont été si complètement vaincues par des espèces acclimatées, qu’elles ont laissé quelques-unes de ces étrangères prendre définitivement possession du sol. Or, les espèces étrangères ayant ainsi, dans chaque pays, vaincu quelques espèces indigènes, on peut en conclure que ces dernières auraient pu se modifier avec avantage, de façon à mieux résister aux envahisseurs.

Puisque l’homme peut obtenir et a certainement obtenu de grands résultats par ses moyens méthodiques et inconscients de sélection, où s’arrête l’action de la sélection naturelle ? L’homme ne peut agir que sur les caractères extérieurs et visibles. La nature, si l’on veut bien me permettre de personnifier sous ce nom la conservation naturelle ou la persistance du plus apte, ne s’occupe aucunement des apparences, à moins que l’apparence n’ait quelque utilité pour les êtres vivants. La nature peut agir sur tous les organes intérieurs, sur la moindre différence d’organisation, sur le mécanisme vital tout entier. L’homme n’a qu’un but : choisir en vue de son propre avantage ; la nature, au contraire, choisit pour l’avantage de l’être lui-même. Elle donne plein exercice aux caractères qu’elle choisit, ce qu’implique le fait seul de leur sélection. L’homme réunit dans un même pays les espèces provenant de bien des climats différents ; il exerce rarement d’une façon spéciale et convenable les caractères qu’il a choisis ; il donne la même nourriture aux pigeons à bec long et aux pigeons à bec court ; il n’exerce pas de façon différente le quadrupède à longues pattes et à courtes pattes ; il expose aux mêmes influences climatériques les moutons à longue laine et ceux à laine courte. Il ne permet pas aux mâles les plus vigoureux de lutter pour la possession des femelles. Il ne détruit pas rigoureusement tous les individus inférieurs ; il protège, au contraire, chacun d’eux, autant qu’il est en son pouvoir, pendant toutes les saisons. Souvent il commence la sélection en choisissant quelques formes à demi monstrueuses, ou, tout au moins, en s’attachant à quelque modification assez apparente pour attirer son attention ou pour lui être immédiatement utile. À l’état de nature, au contraire la plus petite différence de conformation ou de constitution peut suffire à faire pencher la balance dans la lutte pour l’existence et se perpétuer ainsi. Les désirs et les efforts de l’homme sont si changeants ! sa vie est si courte ! Aussi, combien doivent être imparfaits les résultats qu’il obtient, quand on les compare à ceux que peut accumuler la nature pendant de longues périodes géologiques ! Pouvons-nous donc nous étonner que les caractères des productions de la nature soient beaucoup plus franchement accusés que ceux des races domestiques de l’homme ? Quoi d’étonnant à ce que ces productions naturelles soient infiniment mieux adaptées aux conditions les plus complexes de l’existence, et qu’elles portent en tout le cachet d’une œuvre bien plus complète ?

On peut dire, par métaphore, que la sélection naturelle recherche, à chaque instant et dans le monde entier, les variations les plus légères ; elle repousse celles qui sont nuisibles, elle conserve et accumule celles qui sont utiles ; elle travaille en silence, insensiblement, partout et toujours, dès que l’occasion s’en présente, pour améliorer tous les êtres organisés relativement à leurs conditions d’existence organiques et inorganiques. Ces lentes et progressives transformations nous échappent jusqu’à ce que, dans le cours des âges, la main du temps les ait marquées de son empreinte, et alors nous nous rendons si peu compte des longues périodes géologiques écoulées, que nous nous contentons de dire que les formes vivantes sont aujourd’hui différentes de ce qu’elles étaient autrefois.

Pour que des modifications importantes se produisent dans une espèce, il faut qu’une variété une fois formée présente de nouveau, après de longs siècles peut-être, des différences individuelles participant à la nature utile de celles qui se sont présentées d’abord ; il faut, en outre, que ces différences se conservent et se renouvellent encore. Des différences individuelles de la même nature se reproduisent constamment ; il est donc à peu près certain que les choses se passent ainsi. Mais, en somme, nous ne pouvons affirmer ce fait qu’en nous assurant si cette hypothèse concorde avec les phénomènes généraux de la nature et les explique. D’autre part, la croyance générale que la somme des variations possibles est une quantité strictement limitée, est aussi une simple assertion hypothétique.

Bien que la sélection naturelle ne puisse agir qu’en vue de l’avantage de chaque être vivant, il n’en est pas moins vrai que des caractères et des conformations, que nous sommes disposés à considérer comme ayant une importance très secondaire, peuvent être l’objet de son action. Quand nous voyons les insectes qui se nourrissent de feuilles revêtir presque toujours une teinte verte, ceux qui se nourrissent d’écorce une teinte grisâtre, le ptarmigan des Alpes devenir blanc en hiver et le coq de bruyère porter des plumes couleur de bruyère, ne devons-nous pas croire que les couleurs que revêtent certains oiseaux et certains insectes leur sont utiles pour les garantir du danger ? Le coq de bruyère se multiplierait innombrablement s’il n’était pas détruit à quelqu’une des phases de son existence, et on sait que les oiseaux de proie lui font une chasse active ; les faucons, doués d’une vue perçante, aperçoivent leur proie de si loin, que, dans certaines parties du continent, on n’élève pas de pigeons blancs parce qu’ils sont exposés à trop de dangers. La sélection naturelle pourrait donc remplir son rôle en donnant à chaque espèce de coq de bruyère une couleur appropriée au pays qu’il habite, en conservant et en perpétuant cette couleur dès qu’elle est acquise. Il ne faudrait pas penser non plus que la destruction accidentelle d’un animal ayant une couleur particulière ne puisse produire que peu d’effets sur une race. Nous devons nous rappeler, en effet, combien il est essentiel dans un troupeau de moutons blancs de détruire les agneaux qui ont la moindre tache noire. Nous avons vu que la couleur des cochons qui, en Virginie, se nourrissent de certaines racines, est pour eux une cause de vie ou de mort. Chez les plantes, les botanistes considèrent le duvet du fruit et la couleur de la chair comme des caractères très insignifiants ; cependant, un excellent horticulteur, Downing, nous apprend qu’aux États-Unis les fruits à peau lisse souffrent beaucoup plus que ceux recouverts de duvet des attaques d’un insecte, le curculio ; que les prunes pourprées sont beaucoup plus sujettes à certaines maladies que les prunes jaunes ; et qu’une autre maladie attaque plus facilement les pêches à chair jaune que les pêches à chair d’une autre couleur. Si ces légères différences, malgré le secours de l’art, décident du sort des variétés cultivées, ces mêmes différences doivent évidemment, à l’état de nature, suffire à décider qui l’emportera d’un arbre produisant des fruits à la peau lisse ou à la peau velue, à la chair pourpre ou à la chair jaune ; car, dans cet état, les arbres ont à lutter avec d’autres arbres et avec une foule d’ennemis.

Quand nous étudions les nombreux petits points de différence qui existent entre les espèces et qui, dans notre ignorance, nous paraissent insignifiants, nous ne devons pas oublier que le climat, l’alimentation, etc., ont, sans aucun doute, produit quelques effets directs. Il ne faut pas oublier non plus qu’en vertu des lois de la corrélation, quand une partie varie et que la sélection naturelle accumule les variations, il se produit souvent d’autres modifications de la nature la plus inattendue.

Nous avons vu que certaines variations qui, à l’état domestique, apparaissent à une période déterminée de la vie, tendent à réapparaître chez les descendants à la même période. On pourrait citer comme exemples la forme, la taille et la saveur des grains de beaucoup de variétés de nos légumes et de nos plantes agricoles ; les variations du ver à soie à l’état de chenille et de cocon ; les œufs de nos volailles et la couleur du duvet de leurs petits ; les cornes de nos moutons et de nos bestiaux à l’âge adulte. Or, à l’état de nature, la sélection naturelle peut agir sur certains êtres organisés et les modifier à quelque âge que ce soit par l’accumulation de variations profitables à cet âge et par leur transmission héréditaire à l’âge correspondant. S’il est avantageux à une plante que ses graines soient plus facilement disséminées par le vent, il est aussi aisé à la sélection naturelle de produire ce perfectionnement, qu’il est facile au planteur, par la sélection méthodique, d’augmenter et d’améliorer le duvet contenu dans les gousses de ses cotonniers.

La sélection naturelle peut modifier la larve d’un insecte de façon à l’adapter à des circonstances complètement différentes de celles où devra vivre l’insecte adulte. Ces modifications pourront même affecter, en vertu de la corrélation, la conformation de l’adulte. Mais, inversement, des modifications dans la conformation de l’adulte peuvent affecter la conformation de la larve. Dans tous les cas, la sélection naturelle ne produit pas de modifications nuisibles à l’insecte, car alors l’espèce s’éteindrait.

La sélection naturelle peut modifier la conformation du jeune relativement aux parents et celle des parents relativement aux jeunes. Chez les animaux vivant en société, elle transforme la conformation de chaque individu de telle sorte qu’il puisse se rendre utile à la communauté, à condition toutefois que la communauté profite du changement. Mais ce que la sélection naturelle ne saurait faire, c’est de modifier la structure d’une espèce sans lui procurer aucun avantage propre et seulement au bénéfice d’une autre espèce. Or, quoique les ouvrages sur l’histoire naturelle rapportent parfois de semblables faits, je n’en ai pas trouvé un seul qui puisse soutenir l’examen. La sélection naturelle peut modifier profondément une conformation qui ne serait très utile qu’une fois pendant la vie d’un animal, si elle est importante pour lui. Telles sont, par exemple, les grandes mâchoires que possèdent certains insectes et qu’ils emploient exclusivement pour ouvrir leurs cocons, ou l’extrémité cornée du bec des jeunes oiseaux qui les aide à briser l’œuf pour en sortir. On affirme que, chez les meilleures espèces de pigeons culbutants à bec court, il périt dans l’œuf plus de petits qu’il n’en peut sortir ; aussi les amateurs surveillent-ils le moment de l’éclosion pour secourir les petits s’il en est besoin. Or, si la nature voulait produire un pigeon à bec très court pour l’avantage de cet oiseau, la modification serait très lente et la sélection la plus rigoureuse se ferait dans l’œuf, et ceux-là seuls survivraient qui auraient le bec assez fort, car tous ceux à bec faible périraient inévitablement ; ou bien encore, la sélection naturelle agirait pour produire des coquilles plus minces, se cassant plus facilement, car l’épaisseur de la coquille est sujette à la variabilité comme toutes les autres structures.

Il est peut-être bon de faire remarquer ici qu’il doit y avoir, pour tous les êtres, de grandes destructions accidentelles qui n’ont que peu ou pas d’influence sur l’action de la sélection naturelle. Par exemple, beaucoup d’œufs ou de graines sont détruits chaque année ; or, la sélection naturelle ne peut les modifier qu’autant qu’ils varient de façon à échapper aux attaques de leurs ennemis. Cependant, beaucoup de ces œufs ou de ces graines auraient pu, s’ils n’avaient pas été détruits, produire des individus mieux adaptés aux conditions ambiantes qu’aucun de ceux qui ont survécu. En outre, un grand nombre d’animaux ou de plantes adultes, qu’ils soient ou non les mieux adaptés aux conditions ambiantes, doivent annuellement périr, en raison de causes accidentelles, qui ne seraient en aucune façon mitigées par des changements de conformation ou de constitution avantageux à l’espèce sous tous les autres rapports. Mais, quelque considérable que soit cette destruction des adultes, peu importe, pourvu que le nombre des individus qui survivent dans une région quelconque reste assez considérable — peu importe encore que la destruction des œufs ou des graines soit si grande, que la centième ou même la millième partie se développe seule, — il n’en est pas moins vrai que les individus les plus aptes, parmi ceux qui survivent, en supposant qu’il se produise chez eux des variations dans une direction avantageuse, tendent à se multiplier en plus grand nombre que les individus moins aptes. La sélection naturelle ne pourrait, sans doute, exercer son action dans certaines directions avantageuses, si le nombre des individus se trouvait considérablement diminué par les causes que nous venons d’indiquer, et ce cas a dû se produire souvent ; mais ce n’est pas là une objection valable contre son efficacité à d’autres époques et dans d’autres circonstances. Nous sommes loin, en effet, de pouvoir supposer que beaucoup d’espèces soient soumises à des modifications et à des améliorations à la même époque et dans le même pays.

SÉLECTION SEXUELLE.

À l’état domestique, certaines particularités apparaissent souvent chez l’un des sexes et deviennent héréditaires chez ce sexe ; il en est de même à l’état de nature. Il est donc possible que la sélection naturelle modifie les deux sexes relativement aux habitudes différentes de l’existence, comme cela arrive quelquefois, ou qu’un seul sexe se modifie relativement à l’autre sexe, ce qui arrive très souvent. Ceci me conduit à dire quelques mots de ce que j’ai appelé la sélection sexuelle. Cette forme de sélection ne dépend pas de la lutte pour l’existence avec d’autres êtres organisés, ou avec les conditions ambiantes, mais de la lutte entre les individus d’un sexe, ordinairement les mâles, pour s’assurer la possession de l’autre sexe. Cette lutte ne se termine pas par la mort du vaincu, mais par le défaut ou par la petite quantité de descendants. La sélection sexuelle est donc moins rigoureuse que la sélection naturelle. Ordinairement, les mâles les plus vigoureux, c’est-à-dire ceux qui sont les plus aptes à occuper leur place dans la nature, laissent un plus grand nombre de descendants. Mais, dans bien des cas, la victoire ne dépend pas tant de la vigueur générale de l’individu que de la possession d’armes spéciales qui ne se trouvent que chez le mâle. Un cerf dépourvu de bois, ou un coq dépourvu d’éperons, aurait bien peu de chances de laisser de nombreux descendants. La sélection sexuelle, en permettant toujours aux vainqueurs de se reproduire, peut donner sans doute à ceux-ci un courage indomptable, des éperons plus longs, une aile plus forte pour briser la patte du concurrent, à peu près de la même manière que le brutal éleveur de coqs de combat peut améliorer la race par le choix rigoureux de ses plus beaux adultes. Je ne saurais dire jusqu’où descend cette loi de la guerre dans l’échelle de la nature. On dit que les alligators mâles se battent, mugissent, tournent en cercle, comme le font les Indiens dans leurs danses guerrières, pour s’emparer des femelles ; on a vu des saumons mâles se battre pendant des journées entières ; les cerfs volants mâles portent quelquefois la trace des blessures que leur ont faites les larges mandibules d’autres mâles ; M. Fabre, cet observateur inimitable, a vu fréquemment certains insectes hyménoptères mâles se battre pour la possession d’une femelle qui semble rester spectatrice indifférente du combat et qui, ensuite, part avec le vainqueur. La guerre est peut-être plus terrible encore entre les mâles des animaux polygames, car ces derniers semblent pourvus d’armes spéciales. Les animaux carnivores mâles semblent déjà bien armés, et cependant la sélection naturelle peut encore leur donner de nouveaux moyens de défense, tels que la crinière au lion et la mâchoire à crochet au saumon mâle, car le bouclier peut être aussi important que la lance au point de vue de la victoire.

Chez les oiseaux, cette lutte revêt souvent un caractère plus pacifique. Tous ceux qui ont étudié ce sujet ont constaté une ardente rivalité chez les mâles de beaucoup d’espèces pour attirer les femelles par leurs chants. Les merles de roche de la Guyane, les oiseaux de paradis, et beaucoup d’autres encore, s’assemblent en troupes ; les mâles se présentent successivement ; ils étalent avec le plus grand soin, avec le plus d’effet possible, leur magnifique plumage ; ils prennent les poses les plus extraordinaires devant les femelles, simples spectatrices, qui finissent par choisir le compagnon le plus agréable. Ceux qui ont étudié avec soin les oiseaux en captivité savent que, eux aussi, sont très susceptibles de préférences et d’antipathies individuelles : ainsi, sir R. Heron a remarqué que toutes les femelles de sa volière aimaient particulièrement un certain paon panaché. Il n’est impossible d’entrer ici dans tous les détails qui seraient nécessaires ; mais, si l’homme réussit à donner en peu de temps l’élégance du port et la beauté du plumage à nos coqs Bantam, d’après le type idéal que nous concevons pour cette espèce, je ne vois pas pourquoi les oiseaux femelles ne pourraient pas obtenir un résultat semblable en choisissant, pendant des milliers de générations, les mâles qui leur paraissent les plus beaux, ou ceux dont la voix est la plus mélodieuse. On peut expliquer, en partie, par l’action de la sélection sexuelle quelques lois bien connues relatives au plumage des oiseaux mâles et femelles comparé au plumage des petits, par des variations se présentant à différents âges et transmises soit aux mâles seuls, soit aux deux sexes, à l’âge correspondant ; mais l’espace nous manque pour développer ce sujet.

Je crois donc que, toutes les fois que les mâles et les femelles d’un animal quel qu’il soit ont les mêmes habitudes générales d’existence, mais qu’ils diffèrent au point de vue de la conformation, de la couleur ou de l’ornementation, ces différences sont principalement dues à la sélection sexuelle ; c’est-à-dire que certains mâles ont eu, pendant une suite non interrompue de générations, quelques légers avantages sur d’autres mâles, provenant soit de leurs armes, soit de leurs moyens de défense, soit de leur beauté ou de leurs attraits, avantages qu’ils ont transmis exclusivement à leur postérité mâle. Je ne voudrais pas cependant attribuer à cette cause toutes les différences sexuelles ; nous voyons, en effet, chez nos animaux domestiques, se produire chez les mâles des particularités qui ne semblent pas avoir été augmentées par la sélection de l’homme. La touffe de poils sur le jabot du dindon sauvage ne saurait lui être d’aucun avantage, il est douteux même qu’elle puisse lui servir d’ornement aux yeux de la femelle ; si même cette touffe de poils avait apparu à l’état domestique, on l’aurait considérée comme une monstruosité.

EXEMPLES DE L’ACTION DE LA SÉLECTION NATURELLE OU DE LA PERSISTANCE DU PLUS APTE.

Afin de bien faire comprendre de quelle manière agit, selon moi, la sélection naturelle, je demande la permission de donner un ou deux exemples imaginaires. Supposons un loup qui se nourrisse de différents animaux, s’emparant des uns par la ruse, des autres par la force, d’autres, enfin, par l’agilité. Supposons encore que sa proie la plus rapide, le daim par exemple, ait augmenté en nombre à la suite de quelques changements survenus dans le pays, ou que les autres animaux dont il se nourrit ordinairement aient diminué pendant la saison de l’année où le loup est le plus pressé par la faim. Dans ces circonstances, les loups les plus agiles et les plus rapides ont plus de chance de survivre que les autres ; ils persistent donc, pourvu toutefois qu’ils conservent assez de force pour terrasser leur proie et s’en rendre maîtres, à cette époque de l’année ou à toute autre, lorsqu’ils sont forcés de s’emparer d’autres animaux pour se nourrir. Je ne vois pas plus de raison de douter de ce résultat que de la possibilité pour l’homme d’augmenter la vitesse de ses lévriers par une sélection soigneuse et méthodique, ou par cette espèce de sélection inconsciente qui provient de ce que chaque personne s’efforce de posséder les meilleurs chiens, sans avoir la moindre pensée de modifier la race. Je puis ajouter que, selon M. Pierce, deux variétés de loups habitent les montagnes de Catskill, aux États-Unis : l’une de ces variétés, qui affecte un peu la forme du lévrier, se nourrit principalement de daims ; l’autre, plus épaisse, aux jambes plus courtes, attaque plus fréquemment les troupeaux.

Il faut observer que, dans l’exemple cité ci-dessus, je parle des loups les plus rapides pris individuellement, et non pas d’une variation fortement accusée qui s’est perpétuée. Dans les éditions précédentes de cet ouvrage, on pouvait croire que je présentais cette dernière alternative comme s’étant souvent produite. Je comprenais l’immense importance des différences individuelles, et cela m’avait conduit à discuter en détail les résultats de la sélection inconsciente par l’homme, sélection qui dépend de la conservation de tous les individus plus ou moins supérieurs et de la destruction des individus inférieurs. Je comprenais aussi que, à l’état de nature, la conservation d’une déviation accidentelle de structure, telle qu’une monstruosité, doit être un événement très rare, et que, si cette déviation se conserve d’abord, elle doit tendre bientôt à disparaître, à la suite de croisements avec des individus ordinaires. Toutefois, après avoir lu un excellent article de la North British Review (1867), j’ai mieux compris encore combien il est rare que des variations isolées, qu’elles soient légères ou fortement accusées, puissent se perpétuer. L’auteur de cet article prend pour exemple un couple d’animaux produisant pendant leur vie deux cents petits, sur lesquels, en raison de différentes causes de destruction, deux seulement, en moyenne, survivent pour propager leur espèce. On peut dire, tout d’abord, que c’est là une évaluation très minime pour la plupart des animaux élevés dans l’échelle, mais qu’il n’y a rien d’exagéré pour les organismes inférieurs. L’écrivain démontre ensuite que, s’il naît un seul individu qui varie de façon à lui donner deux chances de plus de vie qu’à tous les autres individus, il aurait encore cependant bien peu de chance de persister. En supposant qu’il se reproduise et que la moitié de ses petits héritant de la variation favorable, les jeunes, s’il faut en croire l’auteur, n’auraient qu’une légère chance de plus pour survivre et pour se reproduire, et cette chance diminuerait à chaque génération successive. On ne peut, je crois, mettre en doute la justesse de ces remarques. Supposons, en effet, qu’un oiseau quelconque puisse se procurer sa nourriture plus facilement, s’il a le bec recourbé ; supposons encore qu’un oiseau de cette espèce naisse avec le bec fortement recourbé, et que, par conséquent, il vive facilement ; il n’en est pas moins vrai qu’il y aurait peu de chances que ce seul individu perpétuât son espèce à l’exclusion de la forme ordinaire. Mais, s’il en faut juger d’après ce qui se passe chez les animaux à l’état de domesticité, on ne peut pas douter non plus que, si l’on choisit, pendant plusieurs générations, un grand nombre d’individus ayant le bec plus ou moins recourbé, et si l’on détruit un plus grand nombre encore d’individus ayant le bec le plus droit possible, les premiers ne se multiplient facilement. Toutefois, il ne faut pas oublier que certaines variations fortement accusées, que personne ne songerait à classer comme de simples différences individuelles, se représentent souvent parce que des conditions analogues agissent sur des organismes analogues ; nos productions domestiques nous offrent de nombreux exemples de ce fait. Dans ce cas, si l’individu qui a varié ne transmet pas de point en point à ses petits ses caractères nouvellement acquis, il ne leur transmet pas moins, aussi longtemps que les conditions restent les mêmes, une forte tendance à varier de la même manière. On ne peut guère douter non plus que la tendance à varier dans une même direction n’ait été quelquefois si puissante, que tous les individus de la même espèce se sont modifiés de la même façon, sans l’aide d’aucune espèce de sélection, on pourrait, dans tous les cas, citer bien des exemples d’un tiers, d’un cinquième ou même d’un dixième des individus qui ont été affectés de cette façon. Ainsi, Graba estime que, aux îles Feroë, un cinquième environ des Guillemots se compose d’une variété si bien accusée, qu’on l’a classée autrefois comme une espèce distincte, sous le nom d’Uria lacrymans. Quand il en est ainsi, si la variation est avantageuse à l’animal, la forme modifiée doit supplanter bientôt la forme originelle, en vertu de la survivance du plus apte.

J’aurai à revenir sur les effets des croisements au point de vue de l’élimination des variations de toute sorte ; toutefois, je peux faire remarquer ici que la plupart des animaux et des plantes aiment à conserver le même habitat et ne s’en éloignent pas sans raison ; on pourrait citer comme exemple les oiseaux voyageurs eux-mêmes, qui, presque toujours, reviennent habiter la même localité. En conséquence, toute variété de formation nouvelle serait ordinairement locale dans le principe, ce qui semble, d’ailleurs, être la règle générale pour les variétés à l’état de nature ; de telle façon que les individus modifiés de manière analogue doivent bientôt former un petit groupe et tendre à se reproduire facilement. Si la nouvelle variété réussit dans la lutte pour l’existence, elle se propage lentement autour d’un point central ; elle lutte constamment avec les individus qui n’ont subi aucun changement, en augmentant toujours le cercle de son action, et finit par les vaincre. Il n’est peut-être pas inutile de citer un autre exemple un peu plus compliqué de l’action de la sélection naturelle. Certaines plantes sécrètent une liqueur sucrée, apparemment dans le but d’éliminer de leur sève quelques substances nuisibles. Cette sécrétion s’effectue, parfois, à l’aide de glandes placées à la base des stipules chez quelques légumineuses, et sur le revers des feuilles du laurier commun. Les insectes recherchent avec avidité cette liqueur, bien qu’elle se trouve toujours en petite quantité ; mais leur visite ne constitue aucun avantage pour la plante. Or, supposons qu’un certain nombre de plantes d’une espèce quelconque sécrètent cette liqueur ou ce nectar à l’intérieur de leurs fleurs. Les insectes en quête de ce nectar se couvrent de pollen et le transportent alors d’une fleur à une autre. Les fleurs de deux individus distincts de la même espèce se trouvent croisées par ce fait ; or, le croisement, comme il serait facile de le démontrer, engendre des plants vigoureux, qui ont la plus grande chance de vivre et de se perpétuer. Les plantes qui produiraient les fleurs aux glandes les plus larges, et qui, par conséquent, sécréteraient le plus de liqueur, seraient plus souvent visitées par les insectes et se croiseraient plus souvent aussi ; en conséquence, elles finiraient, dans le cours du temps, par l’emporter sur toutes les autres et par former une variété locale. Les fleurs dont les étamines et les pistils seraient placés, par rapport à la grosseur et aux habitudes des insectes qui les visitent, de manière à favoriser, de quelque façon que ce soit, le transport du pollen, seraient pareillement avantagées. Nous aurions pu choisir pour exemple des insectes qui visitent les fleurs en quête du pollen au lieu de la sécrétion sucrée ; le pollen ayant pour seul objet la fécondation, il semble, au premier abord, que sa destruction soit une véritable perte pour la plante. Cependant, si les insectes qui se nourrissent de pollen transportaient de fleur en fleur un peu de cette substance, accidentellement d’abord, habituellement ensuite, et que des croisements fussent le résultat de ces transports, ce serait encore un gain pour la plante que les neuf dixièmes de son pollen fussent détruits. Il en résulterait que les individus qui posséderaient les anthères les plus grosses et la plus grande quantité de pollen, auraient plus de chances de perpétuer leur espèce.

Lorsqu’une plante, par suite de développements successifs, est de plus en plus recherchée par les insectes, ceux-ci, agissant inconsciemment, portent régulièrement le pollen de fleur en fleur ; plusieurs exemples frappants me permettraient de prouver que ce fait se présente tous les jours. Je n’en citerai qu’un seul, parce qu’il me servira en même temps à démontrer comment peut s’effectuer par degrés la séparation des sexes chez les plantes. Certains Houx ne portent que des fleurs mâles, pourvues d’un pistil rudimentaire et de quatre étamines produisant une petite quantité de pollen ; d’autres ne portent que des fleurs femelles, qui ont un pistil bien développé et quatre étamines avec des anthères non développées, dans lesquelles on ne saurait découvrir un seul grain de pollen. Ayant observé un arbre femelle à la distance de 60 mètres d’un arbre mâle, je plaçai sous le microscope les stigmates de vingt fleurs recueillies sur diverses branches ; sur tous, sans exception, je constatai la présence de quelques grains de pollen, et sur quelques-uns une profusion. Le pollen n’avait pas pu être transporté par le vent, qui depuis plusieurs jours soufflait dans une direction contraire. Le temps était froid, tempêtueux, et par conséquent peu favorable aux visites des abeilles ; cependant toutes les fleurs que j’ai examinées avaient été fécondées par des abeilles qui avaient volé d’arbre en arbre, en quête de nectar. Reprenons notre démonstration : dès que la plante est devenue assez attrayante pour les insectes pour que le pollen soit régulièrement transporté de fleur en fleur, une autre série de faits commence à se produire. Aucun naturaliste ne met en doute les avantages de ce qu’on a appelé la division physiologique du travail. On peut en conclure qu’il serait avantageux pour les plantes de produire seulement des étamines sur une fleur ou sur un arbuste tout entier, et seulement des pistils sur une autre fleur ou sur un autre arbuste. Chez les plantes cultivées et placées, par conséquent, dans de nouvelles conditions d’existence, tantôt les organes mâles et tantôt les organes femelles deviennent plus ou moins impuissants. Or, si nous supposons que ceci puisse se produire, à quelque degré que ce soit, à l’état de nature, le pollen étant déjà régulièrement transporté de fleur en fleur et la complète séparation des sexes étant avantageuse au point de vue de la division du travail, les individus chez lesquels cette tendance augmente de plus en plus sont de plus en plus favorisés et choisis, jusqu’à ce qu’enfin la complète séparation des sexes s’effectue. Il nous faudrait trop de place pour démontrer comment, par le dimorphisme ou par d’autres moyens, certainement aujourd’hui en action, s’effectue actuellement la séparation des sexes chez les plantes de diverses espèces. Mais je puis ajouter que, selon Asa Gray, quelques espèces de Houx, dans l’Amérique septentrionale, se trouvent exactement dans une position intermédiaire, ou, pour employer son expression, sont plus ou moins dioïquement polygames.

Examinons maintenant les insectes qui se nourrissent de nectar. Nous pouvons supposer que la plante, dont nous avons vu les sécrétions augmenter lentement par suite d’une sélection continue, est une plante commune, et que certains insectes comptent en grande partie sur son nectar pour leur alimentation. Je pourrais prouver, par de nombreux exemples, combien les abeilles sont économes de leur temps ; je rappellerai seulement les incisions qu’elles ont coutume de faire à la base de certaines fleurs pour en atteindre le nectar, alors qu’avec un peu plus de peine elles pourraient y entrer par le sommet de la corolle. Si l’on se rappelle ces faits, on peut facilement croire que, dans certaines circonstances, des différences individuelles dans la courbure ou dans la longueur de la trompe, etc., bien que trop insignifiantes pour que nous puissions les apprécier, peuvent être profitables aux abeilles ou à tout autre insecte, de telle façon que certains individus seraient à même de se procurer plus facilement leur nourriture que certains autres ; les sociétés auxquelles ils appartiendraient se développeraient par conséquent plus vite, et produiraient plus d’essaims héritant des mêmes particularités. Les tubes des corolles du trèfle rouge commun et du trèfle incarnat (Trifolium pratense et T. incarnatum) ne paraissent pas, au premier abord, différer de longueur ; cependant, l’abeille domestique atteint aisément le nectar du trèfle incarnat, mais non pas celui du trèfle commun rouge, qui n’est visité que par les bourdons ; de telle sorte que des champs entiers de trèfle rouge offrent en vain à l’abeille une abondante récolte de précieux nectar. Il est certain que l’abeille aime beaucoup ce nectar ; j’ai souvent vu moi-même, mais seulement en automne, beaucoup d’abeilles sucer les fleurs par des trous que les bourdons avaient pratiqués à la base du tube. La différence de la longueur des corolles dans les deux espèces de trèfle doit être insignifiante ; cependant, elle suffit pour décider les abeilles à visiter une fleur plutôt que l’autre. On a affirmé, en outre, que les abeilles visitent les fleurs du trèfle rouge de la seconde récolte qui sont un peu plus petites. Je ne sais pas si cette assertion est fondée ; je ne sais pas non plus si une autre assertion, récemment publiée, est plus fondée, c’est-à-dire que l’abeille de Ligurie, que l’on considère ordinairement comme une simple variété de l’abeille domestique commune, et qui se croise souvent avec elle, peut atteindre et sucer le nectar du trèfle rouge. Quoi qu’il en soit, il serait très avantageux pour l’abeille domestique, dans un pays où abonde cette espèce de trèfle, d’avoir une trompe un peu plus longue ou différemment construite. D’autre part, comme la fécondité de cette espèce de trèfle dépend absolument de la visite des bourdons, il serait très avantageux pour la plante, si les bourdons devenaient rares dans un pays, d’avoir une corolle plus courte ou plus profondément divisée, pour que l’abeille puisse en sucer les fleurs. On peut comprendre ainsi comment il se fait qu’une fleur et un insecte puissent lentement, soit simultanément, soit l’un après l’autre, se modifier et s’adapter mutuellement de la manière la plus parfaite, par la conservation continue de tous les individus présentant de légères déviations de structure avantageuses pour l’un et pour l’autre.

Je sais bien que cette doctrine de la sélection naturelle, basée sur des exemples analogues à ceux que je viens de citer, peut soulever les objections qu’on avait d’abord opposées aux magnifiques hypothèses de sir Charles Lyell, lorsqu’il a voulu expliquer les transformations géologiques par l’action des causes actuelles. Toutefois, il est rare qu’on cherche aujourd’hui à traiter d’insignifiantes les causes que nous voyons encore en action sous nos yeux, quand on les emploie à expliquer l’excavation des plus profondes vallées ou la formation de longues lignes de dunes intérieures. La sélection naturelle n’agit que par la conservation et l’accumulation de petites modifications héréditaires, dont chacune est profitable à l’individu conservé : or, de même que la géologie moderne, quand il s’agit d’expliquer l’excavation d’une profonde vallée, renonce à invoquer l’hypothèse d’une seule grande vague diluvienne, de même aussi la sélection naturelle tend à faire disparaître la croyance à la création continue de nouveaux êtres organisés, ou à de grandes et soudaines modifications de leur structure.

DU CROISEMENT DES INDIVIDUS.

Je dois me permettre ici une courte digression. Quand il s’agit d’animaux et de plantes ayant des sexes séparés, il est évident que la participation de deux individus est toujours nécessaire pour chaque fécondation (à l’exception, toutefois, des cas si curieux et si peu connus de parthénogénèse) ; mais l’existence de cette loi est loin d’être aussi évidente chez les hermaphrodites. Il y a néanmoins quelque raison de croire que, chez tous les hermaphrodites, deux individus coopèrent, soit accidentellement, soit habituellement, à la reproduction de leur espèce. Cette idée fut suggérée, il y a déjà longtemps, mais de façon assez douteuse, par Sprengel, par Knight et par Kölreuter. Nous verrons tout à l’heure l’importance de cette suggestion ; mais je serai obligé de traiter ici ce sujet avec une extrême brièveté, bien que j’aie à ma disposition les matériaux nécessaires pour une discussion approfondie. Tous les vertébrés, tous les insectes et quelques autres groupes considérables d’animaux s’accouplent pour chaque fécondation. Les recherches modernes ont beaucoup diminué le nombre des hermaphrodites supposés, et, parmi les vrais hermaphrodites, il en est beaucoup qui s’accouplent, c’est-à-dire que deux individus s’unissent régulièrement pour la reproduction de l’espèce ; or, c’est là le seul point qui nous intéresse. Toutefois, il y a beaucoup d’hermaphrodites qui, certainement, ne s’accouplent habituellement pas, et la grande majorité des plantes se trouve dans ce cas. Quelle raison peut-il donc y avoir pour supposer que, même alors, deux individus concourent à l’acte reproducteur ? Comme il m’est impossible d’entrer ici dans les détails, je dois me contenter de quelques considérations générales.

En premier lieu, j’ai recueilli un nombre considérable de faits. J’ai fait moi-même un grand nombre d’expériences prouvant, d’accord avec l’opinion presque universelle des éleveurs, que, chez les animaux et chez les plantes, un croisement entre des variétés différentes ou entre des individus de la même variété, mais d’une autre lignée, rend la postérité qui en naît plus vigoureuse et plus féconde ; et que, d’autre part, les reproductions entre proches parents diminuent cette vigueur et cette fécondité. Ces faits si nombreux suffissent à prouver qu’il est une loi générale de la nature tendant à ce qu’aucun être organisé ne se féconde lui-même pendant un nombre illimité de générations, et qu’un croisement avec un autre individu est indispensable de temps à autre, bien que peut-être à de longs intervalles.

Cette hypothèse nous permet, je crois, d’expliquer plusieurs grandes séries de faits tels que le suivant, inexplicable de toute autre façon. Tous les horticulteurs qui se sont occupés de croisements, savent combien l’exposition à l’humidité rend difficile la fécondation d’une fleur ; et, cependant, quelle multitude de fleurs ont leurs anthères et leurs stigmates pleinement exposés aux intempéries de l’air ! Étant admis qu’un croisement accidentel est indispensable, bien que les anthères et le pistil de la plante soient si rapprochés que la fécondation de l’un par l’autre soit presque inévitable, cette libre exposition, quelque désavantageuse qu’elle soit, peut avoir pour but de permettre librement l’entrée du pollen provenant d’un autre individu. D’autre part, beaucoup de fleurs, comme celles de la grande famille des Papilionacées ou Légumineuses, ont les organes sexuels complètement renfermés ; mais ces fleurs offrent presque invariablement de belles et curieuses adaptations en rapport avec les visites des insectes. Les visites des abeilles sont si nécessaires à beaucoup de fleurs de la famille des Papilionacées, que la fécondité de ces dernières diminue beaucoup si l’on empêche ces visites. Or, il est à peine possible que les insectes volent de fleur en fleur sans porter le pollen de l’une à l’autre, au grand avantage de la plante. Les insectes agissent, dans ce cas, comme le pinceau dont nous nous servons, et qu’il suffit, pour assurer la fécondation, de promener sur les anthères d’une fleur et sur les stigmates d’une autre fleur. Mais il ne faudrait pas supposer que les abeilles produisent ainsi une multitude d’hybrides entre des espèces distinctes ; car, si l’on place sur le même stigmate du pollen propre à la plante et celui d’une autre espèce, le premier annule complètement, ainsi que l’a démontré Gærtner, l’influence du pollen étranger.

Quand les étamines d’une fleur s’élancent soudain vers le pistil, ou se meuvent lentement vers lui l’une après l’autre, il semble que ce soit uniquement pour mieux assurer la fécondation d’une fleur par elle-même ; sans doute, cette adaptation est utile dans ce but. Mais l’intervention des insectes est souvent nécessaire pour déterminer les étamines à se mouvoir, comme Kölreuter l’a démontré pour l’épine-vinette. Dans ce genre, où tout semble disposé pour assurer la fécondation de la fleur par elle-même, on sait que, si l’on plante l’une près de l’autre des formes ou des variétés très voisines, il est presque impossible d’élever des plants de race pure, tant elles se croisent naturellement. Dans de nombreux autres cas, comme je pourrais le démontrer par les recherches de Sprengel et d’autres naturalistes aussi bien que par mes propres observations, bien loin que rien contribue à favoriser la fécondation d’une plante par elle-même, on remarque des adaptations spéciales qui empêchent absolument le stigmate de recevoir le pollen de ses propres étamines. Chez le Lobelia fulgens, par exemple, il y a tout un système, aussi admirable que complet, au moyen duquel les anthères de chaque fleur laissent échapper leurs nombreux granules de pollen avant que le stigmate de la même fleur soit prêt à les recevoir. Or, comme, dans mon jardin tout au moins, les insectes ne visitent jamais cette fleur, il en résulte qu’elle ne produit jamais de graines, bien que j’aie pu en obtenir une grande quantité en plaçant moi-même le pollen d’une fleur sur le stigmate d’une autre fleur. Une autre espèce de Lobélia visitée par les abeilles produit, dans mon jardin, des graines abondantes. Dans beaucoup d’autres cas, bien que nul obstacle mécanique spécial n’empêche le stigmate de recevoir le pollen de la même fleur, cependant, comme Sprengel et plus récemment Hildebrand et d’autres l’ont démontré, et comme je puis le confirmer moi-même, les anthères éclatent avant que le stigmate soit prêt à être fécondé, ou bien, au contraire, c’est le stigmate qui arrive à maturité avant le pollen, de telle sorte que ces prétendues plantes dichogames ont en réalité des sexes séparés et doivent se croiser habituellement. Il en est de même des plantes réciproquement dimorphes et trimorphes auxquelles nous avons déjà fait allusion. Combien ces faits sont extraordinaires ! combien il est étrange que le pollen et le stigmate de la même fleur, bien que placés l’un près de l’autre dans le but d’assurer la fécondation de la fleur par elle-même, soient, dans tant de cas, réciproquement inutiles l’un à l’autre ! Comme il est facile d’expliquer ces faits, qui deviennent alors si simples, dans l’hypothèse qu’un croisement accidentel avec un individu distinct est avantageux ou indispensable !

Si on laisse produire des graines à plusieurs variétés de choux, de radis, d’oignons et de quelques autres plantes placées les unes auprès des autres, j’ai observé que la grande majorité des jeunes plants provenant de ces grains sont des métis. Ainsi, j’ai élevé deux cent trente-trois jeunes plants de choux provenant de différentes variétés poussant les unes auprès des autres, et, sur ces deux cent trente-trois plants, soixante-dix-huit seulement étaient de race pure, et encore quelques-uns de ces derniers étaient-ils légèrement altérés. Cependant, le pistil de chaque fleur, chez le chou, est non seulement entouré par six étamines, mais encore par celles des nombreuses autres fleurs qui se trouvent sur le même plant ; en outre, le pollen de chaque fleur arrive facilement au stigmate, sans qu’il soit besoin de l’intervention des insectes ; j’ai observé, en effet, que des plantes protégées avec soin contre les visites des insectes produisent un nombre complet de siliques. Comment se fait-il donc qu’un si grand nombre des jeunes plants soient des métis ? Cela doit provenir de ce que le pollen d’une variété distincte est doué d’un pouvoir fécondant plus actif que le pollen de la fleur elle-même, et que cela fait partie de la loi générale en vertu de laquelle le croisement d’individus distincts de la même espèce est avantageux à la plante. Quand, au contraire, des espèces distinctes se croisent, l’effet est inverse, parce que le propre pollen d’une plante l’emporte presque toujours en pouvoir fécondant sur un pollen étranger ; nous reviendrons, d’ailleurs, sur ce sujet dans un chapitre subséquent.

On pourrait faire cette objection que, sur un grand arbre, couvert d’innombrables fleurs, il est presque impossible que le pollen soit transporté d’arbre en arbre, et qu’à peine pourrait-il l’être de fleur en fleur sur le même arbre ; or, on ne peut considérer que dans un sens très limité les fleurs du même arbre comme des individus distincts. Je crois que cette objection a une certaine valeur, mais la nature y a suffisamment pourvu en donnant aux arbres une forte tendance à produire des fleurs à sexes séparés. Or, quand les sexes sont séparés, bien que le même arbre puisse produire des fleurs mâles et des fleurs femelles, il faut que le pollen soit régulièrement transporté d’une fleur à une autre, et ce transport offre une chance de plus pour que le pollen passe accidentellement d’un arbre à un autre. J’ai constaté que, dans nos contrées, les arbres appartenant à tous les ordres ont les sexes plus souvent séparés que toutes les autres plantes. À ma demande, le docteur Hooker a bien voulu dresser la liste des arbres de la Nouvelle-Zélande, et le docteur Asa Gray celle des arbres des États-Unis ; les résultats ont été tels que je les avais prévus. D’autre part, le docteur Hooker m’a informé que cette règle ne s’applique pas à l’Australie ; mais, si la plupart des arbres australiens sont dichogames, le même effet se produit que s’ils portaient des fleurs à sexes séparés. Je n’ai fait ces quelques remarques sur les arbres que pour appeler l’attention sur ce sujet.

Examinons brièvement ce qui se passe chez les animaux. Plusieurs espèces terrestres sont hermaphrodites, telles, par exemple, que les mollusques terrestres et les vers de terre ; tous néanmoins s’accouplent. Jusqu’à présent, je n’ai pas encore rencontré un seul animal terrestre qui puisse se féconder lui-même. Ce fait remarquable, qui contraste si vivement avec ce qui se passe chez les plantes terrestres, s’explique facilement par l’hypothèse de la nécessité d’un croisement accidentel ; car, en raison de la nature de l’élément fécondant, il n’y a pas, chez l’animal terrestre, de moyens analogues à l’action des insectes et du vent sur les plantes, qui puissent amener un croisement accidentel sans la coopération de deux individus. Chez les animaux aquatiques, il y a, au contraire, beaucoup d’hermaphrodites qui se fécondent eux-mêmes, mais ici les courants offrent un moyen facile de croisements accidentels. Après de nombreuses recherches, faites conjointement avec une des plus hautes et des plus compétentes autorités, le professeur Huxley, il m’a été impossible de découvrir, chez les animaux aquatiques, pas plus d’ailleurs que chez les plantes, un seul hermaphrodite chez lequel les organes reproducteurs fussent si parfaitement internes, que tout accès fût absolument fermé à l’influence accidentelle d’un autre individu, de manière à rendre tout croisement impossible. Les Cirripèdes m’ont longtemps semblé faire exception à cette règle ; mais, grâce à un heureux hasard, j’ai pu prouver que deux individus, tous deux hermaphrodites et capables de se féconder eux-mêmes, se croisent cependant quelquefois.

La plupart des naturalistes ont dû être frappés, comme d’une étrange anomalie, du fait que, chez les animaux et chez les plantes, parmi les espèces d’une même famille et aussi d’un même genre, les unes sont hermaphrodites et les autres unisexuelles, bien qu’elles soient très semblables par tous les autres points de leur organisation. Cependant, s’il se trouve que tous les hermaphrodites se croisent de temps en temps, la différence qui existe entre eux et les espèces unisexuelles est fort insignifiante, au moins sous le rapport des fonctions.

Ces différentes considérations et un grand nombre de faits spéciaux que j’ai recueillis, mais que le défaut d’espace m’empêche de citer ici, semblent prouver que le croisement accidentel entre des individus distincts, chez les animaux et chez les plantes, constitue une loi sinon universelle, au moins très générale dans la nature.

CIRCONSTANCES FAVORABLES À LA PRODUCTION DE NOUVELLES FORMES PAR LA SÉLECTION NATURELLE.

C’est là un sujet extrêmement compliqué. Une grande variabilité, et, sous ce terme, on comprend toujours les différences individuelles, est évidemment favorable à l’action de la sélection naturelle. La multiplicité des individus, en offrant plus de chances de variations avantageuses dans un temps donné, compense une variabilité moindre chez chaque individu pris personnellement, et c’est là, je crois, un élément important de succès. Bien que la nature accorde de longues périodes au travail de la sélection naturelle, il ne faudrait pas croire, cependant, que ce délai soit indéfini. En effet, tous les êtres organisés luttent pour s’emparer des places vacantes dans l’économie de la nature ; par conséquent, si une espèce, quelle qu’elle soit, ne se modifie pas et ne se perfectionne pas aussi vite que ses concurrents, elle doit être exterminée. En outre, la sélection naturelle ne peut agir que si quelques-uns des descendants héritent de variations avantageuses. La tendance au retour vers le type des aïeux peut souvent entraver ou empêcher l’action de la sélection naturelle ; mais, d’un autre côté, comme cette tendance n’a pas empêché l’homme de créer, par la sélection, de nombreuses races domestiques, pourquoi prévaudrait-elle contre l’œuvre de la sélection naturelle ?

Quand il s’agit d’une sélection méthodique, l’éleveur choisit, certains sujets pour atteindre un but déterminé ; s’il permet à tous les individus de se croiser librement, il est certain qu’il échouera. Mais, quand beaucoup d’éleveurs, sans avoir l’intention de modifier une race, ont un type commun de perfection, et que tous essayent de se procurer et de faire reproduire les individus les plus parfaits, cette sélection inconsciente amène lentement mais sûrement, de grands progrès, en admettant même qu’on ne sépare pas les individus plus particulièrement beaux. Il en est de même à l’état de nature ; car, dans une région restreinte, dont l’économie générale présente quelques lacunes, tous les individus variant dans une certaine direction déterminée, bien qu’à des degrés différents, tendent à persister. Si, au contraire, la région est considérable, les divers districts présentent certainement des conditions différentes d’existence ; or, si une même espèce est soumise à des modifications dans ces divers districts, les variétés nouvellement formées se croisent sur les confins de chacun d’eux. Nous verrons, toutefois, dans le sixième chapitre de cet ouvrage, que les variétés intermédiaires, habitant des districts intermédiaires, sont ordinairement éliminées, dans un laps de temps plus ou moins considérable, par une des variétés voisines. Le croisement affecte principalement les animaux qui s’accouplent pour chaque fécondation, qui vagabondent beaucoup, et qui ne se multiplient pas dans une proportion rapide. Aussi, chez les animaux de cette nature, les oiseaux par exemple, les variétés doivent ordinairement être confinées dans des régions séparées les unes des autres ; or, c’est là ce qui arrive presque toujours. Chez les organismes hermaphrodites qui ne se croisent qu’accidentellement, de même que chez les animaux qui s’accouplent pour chaque fécondation, mais qui vagabondent peu, et qui se multiplient rapidement, une nouvelle variété perfectionnée peut se former vite en un endroit quelconque, peut s’y maintenir et se répandre ensuite de telle sorte que les individus de la nouvelle variété se croisent principalement ensemble. C’est en vertu de ce principe que les horticulteurs préfèrent toujours conserver des graines recueillies sur des massifs considérables de plantes, car ils évitent ainsi les chances de croisement.

Il ne faudrait pas croire non plus que les croisements faciles pussent entraver l’action de la sélection naturelle chez les animaux qui se reproduisent lentement et s’accouplent pour chaque fécondation. Je pourrais citer des faits nombreux prouvant que, dans un même pays, deux variétés d’une même espèce d’animaux peuvent longtemps rester distinctes, soit qu’elles fréquentent ordinairement des régions différentes, soit que la saison de l’accouplement ne soit pas la même pour chacune d’elles, soit enfin que les individus de chaque variété préfèrent s’accoupler les uns avec les autres.

Le croisement joue un rôle considérable dans la nature ; grâce à lui les types restent purs et uniformes dans la même espèce ou dans la même variété. Son action est évidemment plus efficace chez les animaux qui s’accouplent pour chaque fécondation ; mais nous venons de voir que tous les animaux et toutes les plantes se croisent de temps en temps. Lorsque les croisements n’ont lieu qu’à de longs intervalles, les individus qui en proviennent, comparés à ceux résultant de la fécondation de la plante ou de l’animal par lui-même, sont beaucoup plus vigoureux, beaucoup plus féconds, et ont, par suite, plus de chances de survivre et de propager leur espèce. Si rares donc que soient certains croisements, leur influence doit, après une longue période, exercer un effet puissant sur les progrès de l’espèce. Quant aux êtres organisés placés très bas sur l’échelle, qui ne se propagent pas sexuellement, qui ne s’accouplent pas, et chez lesquels les croisements sont impossibles, l’uniformité des caractères ne peut se conserver chez eux, s’ils restent placés dans les mêmes conditions d’existence, qu’en vertu du principe de l’hérédité et grâce à la sélection naturelle, dont l’action amène la destruction des individus qui s’écartent du type ordinaire. Si les conditions d’existence viennent à changer, si la forme subit des modifications, la sélection naturelle, en conservant des variations avantageuses analogues, peut seule donner aux rejetons modifiés l’uniformité des caractères.

L’isolement joue aussi un rôle important dans la modification des espèces par la sélection naturelle. Dans une région fermée, isolée et peu étendue, les conditions organiques et inorganiques de l’existence sont presque toujours uniformes, de telle sorte que la sélection naturelle tend à modifier de la même manière tous les individus variables de la même espèce. En outre, le croisement avec les habitants des districts voisins se trouve empêché. Moritz Wagner a dernièrement publié, à ce sujet, un mémoire très intéressant ; il a démontré que l’isolement, en empêchant les croisements entre les variétés nouvellement formées, a probablement un effet plus considérable que je ne le supposais moi-même. Mais, pour des raisons que j’ai déjà indiquées, je ne puis, en aucune façon, adopter l’opinion de ce naturaliste, quand il soutient que la migration et l’isolement sont les éléments nécessaires à la formation de nouvelles espèces. L’isolement joue aussi un rôle très important après un changement physique des conditions d’existence, tel, par exemple, que modifications de climat, soulèvement du sol, etc., car il empêche l’immigration d’organismes mieux adaptés à ces nouvelles conditions d’existence ; il se trouve ainsi, dans l’économie naturelle de la région, de nouvelles places vacantes, qui seront remplies au moyen des modifications des anciens habitants. Enfin, l’isolement assure à une variété nouvelle tout le temps qui lui est nécessaire pour se perfectionner lentement, et c’est là parfois un point important. Cependant, si la région isolée est très petite, soit parce qu’elle est entourée de barrières, soit parce que les conditions physiques y sont toutes particulières, le nombre total de ses habitants sera aussi très peu considérable, ce qui retarde l’action de la sélection naturelle, au point de vue de la sélection de nouvelles espèces, car les chances de l’apparition de variation avantageuses se trouvent diminuées.

La seule durée du temps ne peut rien par elle-même, ni pour ni contre la sélection naturelle. J’énonce cette règle parce qu’on a soutenu à tort que j’accordais à l’élément du temps un rôle prépondérant dans la transformation des espèces, comme si toutes les formes de la vie devaient nécessairement subir des modifications en vertu de quelques lois innées. La durée du temps est seulement importante — et sous ce rapport on ne saurait exagérer cette importance — en ce qu’elle présente plus de chance pour l’apparition de variations avantageuses et en ce qu’elle leur permet, après qu’elles ont fait l’objet de la sélection, de s’accumuler et de se fixer. La durée du temps contribue aussi à augmenter l’action directe des conditions physiques de la vie dans leur rapport avec la constitution de chaque organisme.

Si nous interrogeons la nature pour lui demander la preuve des règles que nous venons de formuler, et que nous considérions une petite région isolée, quelle qu’elle soit, une île océanique, par exemple, bien que le nombre des espèces qui l’habitent soit peu considérable, — comme nous le verrons dans notre chapitre sur la distribution géographique, — cependant la plus grande partie de ces espèces sont endémiques, c’est-à-dire qu’elles ont été produites en cet endroit, et nulle part ailleurs dans le monde. Il semblerait donc, à première vue, qu’une île océanique soit très favorable à la production de nouvelles espèces. Mais nous sommes très exposés à nous tromper, car, pour déterminer si une petite région isolée a été plus favorable qu’une grande région ouverte comme un continent, ou réciproquement, à la production de nouvelles formes organiques, il faudrait pouvoir établir une comparaison entre des temps égaux, ce qu’il nous est impossible de faire.

L’isolement contribue puissamment, sans contredit, à la production de nouvelles espèces ; toutefois, je suis disposé à croire qu’une vaste contrée ouverte est plus favorable encore, quand il s’agit de la production des espèces capables de se perpétuer pendant de longues périodes et d’acquérir une grande extension. Une grande contrée ouverte offre non seulement plus de chances pour que des variations avantageuses fassent leur apparition en raison du grand nombre des individus de la même espèce qui l’habitent, mais aussi en raison de ce que les conditions d’existence sont beaucoup plus complexes à cause de la multiplicité des espèces déjà existantes. Or, si quelqu’une de ces nombreuses espèces se modifie et se perfectionne, d’autres doivent se perfectionner aussi dans la même proportion, sinon elles disparaîtraient fatalement. En outre, chaque forme nouvelle, dès qu’elle s’est beaucoup perfectionnée, peut se répandre dans une région ouverte et continue, et se trouve ainsi en concurrence avec beaucoup d’autres formes. Les grandes régions, bien qu’aujourd’hui continues, ont dû souvent, grâce à d’anciennes oscillations de niveau, exister antérieurement à un état fractionné, de telle sorte que les bons effets de l’isolement ont pu se produire aussi dans une certaine mesure. En résumé, je conclus que, bien que les petites régions isolées soient, sous quelques rapports, très favorables à la production de nouvelles espèces, les grandes régions doivent cependant favoriser des modifications plus rapides, et qu’en outre, ce qui est plus important, les nouvelles formes produites dans de grandes régions, ayant déjà remporté la victoire sur de nombreux concurrents, sont celles qui prennent l’extension la plus rapide et qui engendrent un plus grand nombre de variétés et d’espèces nouvelles. Ce sont donc celles qui jouent le rôle le plus important dans l’histoire constamment changeante du monde organisé.

Ce principe nous aide, peut-être, à comprendre quelques faits sur lesquels nous aurons à revenir dans notre chapitre sur la distribution géographique ; par exemple, le fait que les productions du petit continent australien disparaissent actuellement devant celles du grand continent européo-asiatique. C’est pourquoi aussi les productions continentales se sont acclimatées partout et en si grand nombre dans les îles. Dans une petite île, la lutte pour l’existence a dû être moins ardente, et, par conséquent, les modifications et les extinctions moins importantes. Ceci nous explique pourquoi la flore de Madère, ainsi que le fait remarquer Oswald Heer, ressemble, dans une certaine mesure, à la flore éteinte de l’époque tertiaire en Europe. La totalité de la superficie de tous les bassins d’eau douce ne forme qu’une petite étendue en comparaison de celle des terres et des mers. En conséquence, la concurrence, chez les productions d’eau douce, a dû être moins vive que partout ailleurs ; les nouvelles formes ont dû se produire plus lentement, les anciennes formes s’éteindre plus lentement aussi. Or, c’est dans l’eau douce que nous trouvons sept genres de poissons ganoïdes, restes d’un ordre autrefois prépondérant ; c’est également dans l’eau douce que nous trouvons quelques-unes des formes les plus anormales que l’on connaisse dans le monde, l’Ornithorhynque et le Lépidosirène, par exemple, qui, comme certains animaux fossiles, constituent jusqu’à un certain point une transition entre des ordres aujourd’hui profondément séparés dans l’échelle de la nature. On pourrait appeler ces formes anormales de véritables fossiles vivants ; si elles se sont conservées jusqu’à notre époque, c’est qu’elles ont habité une région isolée, et qu’elles ont été exposées à une concurrence moins variée et, par conséquent, moins vive.

S’il me fallait résumer en quelques mots les conditions avantageuses ou non à la production de nouvelles espèces par la sélection naturelle, autant toutefois qu’un problème aussi complexe le permet, je serais disposé à conclure que, pour les productions terrestres, un grand continent, qui a subi de nombreuses oscillations de niveau, a dû être le plus favorable à la production de nombreux êtres organisés nouveaux, capables de se perpétuer pendant longtemps et de prendre une grande extension. Tant que la région a existé ; sous forme de continent, les habitants ont dû être nombreux en espèces et en individus, et, par conséquent, soumis à une ardente concurrence. Quand, à la suite d’affaissements, ce continent s’est subdivisé en nombreuses grandes îles séparées, chacune de ces îles a dû encore contenir beaucoup d’individus de la même espèce, de telle sorte que les croisements ont dû cesser entre les variétés bientôt devenues propres à chaque île. Après des changements physiques de quelque nature que ce soit, toute immigration a dû cesser, de façon que les anciens habitants modifiés ont dû occuper toutes les places nouvelles dans l’économie naturelle de chaque île ; enfin, le laps de temps écoulé a permis aux variétés, habitant chaque île, de se modifier complètement et de se perfectionner. Quand, à la suite de soulèvements, les îles se sont de nouveau transformées en un continent, une lutte fort vive a dû recommencer ; les variétés les plus favorisées ou les plus perfectionnées ont pu alors s’étendre ; les formes moins perfectionnées ont été exterminées, et le continent renouvelé a changé d’aspect au point de vue du nombre relatif de ses différents habitants. Là, enfin, s’ouvre un nouveau champ pour la sélection naturelle, qui tend à perfectionner encore plus les habitants et à produire de nouvelles espèces.

J’admets complètement que la sélection naturelle agit d’ordinaire avec une extrême lenteur. Elle ne peut même agir que lorsqu’il y a, dans l’économie naturelle d’une région, des places vacantes, qui seraient mieux remplies si quelques-uns des habitants subissaient certaines modifications. Ces lacunes ne se produisent le plus souvent qu’à la suite de changements physiques, qui presque toujours s’accomplissent très lentement, et à condition que quelques obstacles s’opposent à l’immigration de formes mieux adaptées. Toutefois, à mesure que quelques-uns des anciens habitants se modifient, les rapports mutuels de presque tous les autres doivent changer. Cela seul suffit à créer des lacunes que peuvent remplir des formes mieux adaptées ; mais c’est là une opération qui s’accomplit très lentement. Bien que tous les individus de la même espèce diffèrent quelque peu les uns des autres, il faut souvent beaucoup de temps avant qu’il se produise des variations avantageuses dans les différentes parties de l’organisation ; en outre, le libre croisement retarde souvent beaucoup les résultats qu’on pourrait obtenir. On ne manquera pas de m’objecter que ces diverses causes sont plus que suffisantes pour neutraliser l’influence de la sélection naturelle. Je ne le crois pas. J’admets, toutefois, que la sélection naturelle n’agit que très lentement et seulement à de longs intervalles, et seulement aussi sur quelques habitants d’une même région. Je crois, en outre, que ces résultats lents et intermittents concordent bien avec ce que nous apprend la géologie sur le développement progressif des habitants du monde.

Quelque lente pourtant que soit la marche de la sélection naturelle, si l’homme, avec ses moyens limités, peut réaliser tant de progrès en appliquant la sélection artificielle, je ne puis concevoir aucune limite à la somme des changements, de même qu’à la beauté et à la complexité des adaptations de tous les êtres organisés dans leurs rapports les uns avec les autres et avec les conditions physiques d’existence que peut, dans le cours successif des âges, réaliser le pouvoir sélectif de la nature.

LA SÉLECTION NATURELLE AMÈNE CERTAINES EXTINCTIONS.

Nous traiterons plus complètement ce sujet dans le chapitre relatif à la géologie. Il faut toutefois en dire ici quelques mots, parce qu’il se relie de très près à la sélection naturelle. La sélection naturelle agit uniquement au moyen de la conservation des variations utiles à certains égards, variations qui persistent en raison de cette utilité même. Grâce à la progression géométrique de la multiplication de tous les êtres organisés, chaque région contient déjà autant d’habitants qu’elle en peut nourrir ; il en résulte que, à mesure que les formes favorisées augmentent en nombre, les formes moins favorisées diminuent et deviennent très rares. La géologie nous enseigne que la rareté est le précurseur de l’extinction. Il est facile de comprendre qu’une forme quelconque, n’ayant plus que quelques représentants, a de grandes chances pour disparaître complètement, soit en raison de changements considérables dans la nature des saisons, soit à cause de l’augmentation temporaire du nombre de ses ennemis. Nous pouvons, d’ailleurs, aller plus loin encore ; en effet, nous pouvons affirmer que les formes les plus anciennes doivent disparaître à mesure que des formes nouvelles se produisent, à moins que nous n’admettions que le nombre des formes spécifiques augmente indéfiniment. Or, la géologie nous démontre clairement que le nombre des formes spécifiques n’a pas indéfiniment augmenté, et nous essayerons de démontrer tout à l’heure comment il se fait que le nombre des espèces n’est pas devenu infini sur le globe.

Nous avons vu que les espèces qui comprennent le plus grand nombre d’individus ont le plus de chance de produire, dans un temps donné, des variations favorables. Les faits cités dans le second chapitre nous en fournissent la preuve, car ils démontrent que ce sont les espèces communes, étendues ou dominantes, comme nous les avons appelées, qui présentent le plus grand nombre de variétés. Il en résulte que les espèces rares se modifient ou se perfectionnent moins vite dans un temps donné ; en conséquence, elles sont vaincues, dans la lutte pour l’existence, par les descendants modifiés ou perfectionnés des espèces plus communes.

Je crois que ces différentes considérations nous conduisent à une conclusion inévitable : à mesure que de nouvelles espèces se forment dans le cours des temps, grâce à l’action de la sélection naturelle, d’autres espèces deviennent de plus en plus rares et finissent par s’éteindre. Celles qui souffrent le plus, sont naturellement celles qui se trouvent plus immédiatement en concurrence avec les espèces qui se modifient et qui se perfectionnent. Or, nous avons vu, dans le chapitre traitant de la lutte pour l’existence, que ce sont les formes les plus voisines — les variétés de la même espèce et les espèces du même genre ou de genres voisins — qui, en raison de leur structure, de leur constitution et de leurs habitudes analogues, luttent ordinairement le plus vigoureusement les unes avec les autres ; en conséquence, chaque variété ou chaque espèce nouvelle, pendant qu’elle se forme, doit lutter ordinairement avec plus d’énergie avec ses parents les plus proches et tendre à les détruire. Nous pouvons remarquer, d’ailleurs, une même marche d’extermination chez nos productions domestiques, en raison de la sélection opérée par l’homme. On pourrait citer bien des exemples curieux pour prouver avec quelle rapidité de nouvelles races de bestiaux, de moutons et d’autres animaux, ou de nouvelles variétés de fleurs, prennent la place de races plus anciennes et moins perfectionnées. L’histoire nous apprend que, dans le Yorkshire, les anciens bestiaux noirs ont été remplacés par les bestiaux à longues cornes, et que ces derniers ont disparu devant les bestiaux à courtes cornes (je cite les expressions mêmes d’un écrivain agricole), comme s’ils avaient été emportés par la peste.

DIVERGENCE DES CARACTÈRES.

Le principe que je désigne par ce terme a une haute importance, et permet, je crois, d’expliquer plusieurs faits importants. En premier lieu, les variétés, alors même qu’elles sont fortement prononcées, et bien qu’elles aient, sous quelques rapports, les caractères d’espèces — ce qui est prouvé par les difficultés que l’on éprouve, dans bien des cas, pour les classer — diffèrent cependant beaucoup moins les unes des autres que ne le font les espèces vraies et distinctes. Néanmoins, je crois que les variétés sont des espèces en voie de formation, ou sont, comme je les ai appelées, des espèces naissantes. Comment donc se fait-il qu’une légère différence entre les variétés s’amplifie au point de devenir la grande différence que nous remarquons entre les espèces ? La plupart des innombrables espèces qui existent dans la nature, et qui présentent des différences bien tranchées, nous prouvent que le fait est ordinaire ; or, les variétés, souche supposée d’espèces futures bien définies, présentent des différences légères et à peine indiquées. Le hasard, pourrions-nous dire, pourrait faire qu’une variété différât, sous quelques rapports, de ses ascendants ; les descendants de cette variété pourraient, à leur tour, différer de leurs ascendants sous les mêmes rapports, mais de façon plus marquée ; cela, toutefois, ne suffirait pas à expliquer les grandes différences qui existent habituellement entre les espèces du même genre.

Comme je le fais toujours, j’ai cherché chez nos productions domestiques l’explication de ce fait. Or, nous remarquons chez elles quelque chose d’analogue. On admettra, sans doute, que la production de races aussi différentes que le sont les bestiaux à courtes cornes et les bestiaux de Hereford, le cheval de course et le cheval de trait, les différentes races de pigeons, etc., n’aurait jamais pu s’effectuer par la seule accumulation, due au hasard, de variations analogues pendant de nombreuses générations successives. En pratique, un amateur remarque, par exemple, un pigeon ayant un bec un peu plus court qu’il n’est usuel ; un autre amateur remarque un pigeon ayant un bec long ; en vertu de cet axiome que les amateurs n’admettent pas un type moyen, mais préfèrent les extrêmes, ils commencent tous deux (et c’est ce qui est arrivé pour les sous-races du pigeon Culbutant) à choisir et à faire reproduire des oiseaux ayant un bec de plus en plus long ou un bec de plus en plus court. Nous pouvons supposer encore que, à une antique période de l’histoire, les habitants d’une nation ou d’un district aient eu besoin de chevaux rapides, tandis que ceux d’un autre district avaient besoin de chevaux plus lourds et plus forts. Les premières différences ont dû certainement être très légères, mais, dans la suite des temps, en conséquence de la sélection continue de chevaux rapides dans un cas et de chevaux vigoureux dans l’autre, les différences ont dû s’accentuer, et on en est arrivé à la formation de deux sous-races. Enfin, après des siècles, ces deux sous-races se sont converties en deux races distinctes et fixes. À mesure que les différences s’accentuaient, les animaux inférieurs ayant des caractères intermédiaires, c’est-à-dire ceux qui n’étaient ni très rapides ni très forts, n’ont jamais dû être employés à la reproduction, et ont dû tendre ainsi à disparaître. Nous voyons donc ici, dans les productions de l’homme, l’action de ce qu’on peut appeler « le principe de la divergence » ; en vertu de ce principe, des différences, à peine appréciables d’abord, augmentent continuellement, et les races tendent à s’écarter chaque jour davantage les unes des autres et de la souche commune.

Mais comment, dira-t-on, un principe analogue peut-il s’appliquer dans la nature ? Je crois qu’il peut s’appliquer et qu’il s’applique de la façon la plus efficace (mais je dois avouer qu’il m’a fallu longtemps pour comprendre comment), en raison de cette simple circonstance que, plus les descendants d’une espèce quelconque deviennent différents sous le rapport de la structure, de la constitution et des habitudes, plus ils sont à même de s’emparer de places nombreuses et très différentes dans l’économie de la nature, et par conséquent d’augmenter en nombre.

Nous pouvons clairement discerner ce fait chez les animaux ayant des habitudes simples. Prenons, par exemple, un quadrupède carnivore et admettons que le nombre de ces animaux a atteint, il y a longtemps, le maximum de ce que peut nourrir un pays quel qu’il soit. Si la tendance naturelle de ce quadrupède à se multiplier continue à agir, et que les conditions actuelles du pays qu’il habite ne subissent aucune modification, il ne peut réussir à s’accroître en nombre qu’à condition que ses descendants variables s’emparent de places à présent occupées par d’autres animaux : les uns, par exemple, en devenant capables de se nourrir de nouvelles espèces de proies mortes ou vivantes ; les autres, en habitant de nouvelles stations, en grimpant aux arbres, en devenant aquatiques ; d’autres enfin, peut-être, en devenant moins carnivores. Plus les descendants de notre animal carnivore se modifient sous le rapport des habitudes et de la structure, plus ils peuvent occuper de places dans la nature. Ce qui s’applique à un animal s’applique à tous les autres et dans tous les temps, à une condition toutefois, c’est qu’il soit susceptible de variations, car autrement la sélection naturelle ne peut rien. Il en est de même pour les plantes. On a prouvé par l’expérience que, si on sème dans un carré de terrain une seule espèce de graminées, et dans un carré semblable plusieurs genres distincts de graminées, il lève dans ce second carré plus de plants, et on récolte un poids plus considérable d’herbages secs que dans le premier. Cette même loi s’applique aussi quand on sème, dans des espaces semblables, soit une seule variété de froment, soit plusieurs variétés mélangées. En conséquence, si une espèce quelconque de graminées varie et que l’on choisisse continuellement les variétés qui diffèrent l’une de l’autre de la même manière, bien qu’à un degré peu considérable, comme le font d’ailleurs les espèces distinctes et les genres de graminées, un plus grand nombre de plantes individuelles de cette espèce, y compris ses descendants modifiés, parviendraient à vivre sur un même terrain. Or, nous savons que chaque espèce et chaque variété de graminées répandent annuellement sur le sol des graines innombrables, et que chacune d’elles, pourrait-on dire, fait tous ses efforts pour augmenter en nombre. En conséquence, dans le cours de plusieurs milliers de générations, les variétés les plus distinctes d’une espèce quelconque de graminées auraient la meilleure chance de réussir, d’augmenter en nombre et de supplanter ainsi les variétés moins distinctes ; or, les variétés, quand elles sont devenues très distinctes les unes des autres, prennent le rang d’espèces.

Bien des circonstances naturelles nous démontrent la vérité du principe, qu’une grande diversité de structure peut maintenir la plus grande somme de vie. Nous remarquons toujours une grande diversité chez les habitants d’une région très petite, surtout si cette région est librement ouverte à l’immigration, où, par conséquent, la lutte entre individus doit être très vive. J’ai observé, par exemple, qu’un gazon, ayant une superficie de 3 pieds sur 4, placé, depuis bien des années, absolument dans les mêmes conditions, contenait 20 espèces de plantes appartenant à 18 genres et à 8 ordres, ce qui prouve combien ces plantes différaient les unes des autres. Il en est de même pour les plantes et pour les insectes qui habitent des petits îlots uniformes, ou bien des petits étangs d’eau douce. Les fermiers ont trouvé qu’ils obtiennent de meilleures récoltes en établissant une rotation de plantes appartenant aux ordres les plus différents ; or, la nature suit ce qu’on pourrait appeler une « rotation simultanée ». La plupart des animaux et des plantes qui vivent tout auprès d’un petit terrain, quel qu’il soit, pourraient vivre sur ce terrain, en supposant toutefois que sa nature n’offrît aucune particularité extraordinaire ; on pourrait même dire qu’ils font tous leurs efforts pour s’y porter, mais on voit que, quand la lutte devient très vive, les avantages résultant de la diversité de structure ainsi que des différences d’habitude et de constitution qui en sont la conséquence, font que les habitants qui se coudoient ainsi de plus près appartiennent en règle générale à ce que nous appelons des genres et des ordres différents.

L’acclimatation des plantes dans les pays étrangers, amenée par l’intermédiaire de l’homme, fournit une nouvelle preuve du même principe. On devrait s’attendre à ce que toutes les plantes qui réussissent à s’acclimater dans un pays quelconque fussent ordinairement très voisines des plantes indigènes ; ne pense-t-on pas ordinairement, en effet, que ces dernières ont été spécialement créées pour le pays qu’elles habitent et adaptées à ses conditions ? On pourrait s’attendre aussi, peut-être, à ce que les plantes acclimatées appartinssent à quelques groupes plus spécialement adaptés à certaines stations de leur nouvelle patrie. Or, le cas est tout différent, et Alphonse de Candolle a fait remarquer avec raison, dans son grand et admirable ouvrage, que les flores, par suite de l’acclimatation, s’augmentent beaucoup plus en nouveaux genres qu’en nouvelles espèces, proportionnellement au nombre des genres et des espèces indigènes. Pour en donner un seul exemple, dans la dernière édition du Manuel de la flore de la partie septentrionale des États-Unis par le docteur Asa Gray, l’auteur indique 260 plantes acclimatées, qui appartiennent à 162 genres. Ceci suffit à prouver que ces plantes acclimatées ont une nature très diverse. Elles diffèrent, en outre, dans une grande mesure, des plantes indigènes ; car, sur ces 162 genres acclimatés, il n’y en a pas moins de 100 qui ne sont pas indigènes aux États-Unis ; une addition proportionnelle considérable a donc ainsi été faite aux genres qui habitent aujourd’hui ce pays.

Si nous considérons la nature des plantes ou des animaux qui, dans un pays quelconque, ont lutté avec avantage avec les habitants indigènes et se sont ainsi acclimatés, nous pouvons nous faire quelque idée de la façon dont les habitants indigènes devraient se modifier pour l’emporter sur leurs compatriotes. Nous pouvons, tout au moins, en conclure que la diversité de structure, arrivée au point de constituer de nouvelles différences génériques, leur serait d’un grand profit.

Les avantages de la diversité de structure chez les habitants d’une même région sont analogues, en un mot, à ceux que présente la division physiologique du travail dans les organes d’un même individu, sujet si admirablement élucidé par Milne-Edwards. Aucun physiologiste ne met en doute qu’un estomac fait pour digérer des matières végétales seules, ou des matières animales seules, tire de ces substances la plus grande somme de nourriture. De même, dans l’économie générale d’un pays quelconque, plus les animaux et les plantes offrent de diversités tranchées les appropriant à différents modes d’existence, plus le nombre des individus capables d’habiter ce pays est considérable. Un groupe d’animaux dont l’organisme présente peu de différences peut difficilement lutter avec un groupe dont les différences sont plus accusées. On pourrait douter, par exemple, que les marsupiaux australiens, divisés en groupes différant très peu les uns des autres, et qui représentent faiblement, comme M. Waterhouse et quelques autres l’ont fait remarquer, nos carnivores, nos ruminants et nos rongeurs, puissent lutter avec succès contre ces ordres si bien développés. Chez les mammifères australiens nous pouvons donc observer la diversification des espèces à un état incomplet de développement.

EFFETS PROBABLES DE L’ACTION DE LA SÉLECTION NATURELLE, PAR SUITE DE LA DIVERGENCE DES CARACTÈRES ET DE L’EXTINCTION, SUR LES DESCENDANTS D’UN ANCÊTRE COMMUN.

Après la discussion qui précède, quelque résumée qu’elle soit, nous pouvons conclure que les descendants modifiés d’une espèce quelconque réussissent d’autant mieux que leur structure est plus diversifiée et qu’ils peuvent ainsi s’emparer de places occupées par d’autres êtres. Examinons maintenant comment ces avantages résultant de la divergence des caractères tendent à agir, quand ils se combinent avec la sélection naturelle et l’extinction.

Le diagramme ci-contre peut nous aider à comprendre ce sujet assez compliqué. Supposons que les lettres A à L représentent les espèces d’un genre riche dans le pays qu’il habite ; supposons, en outre, que ces espèces se ressemblent, à des degrés inégaux, comme cela arrive ordinairement dans la nature ; c’est ce qu’indiquent, dans le diagramme, les distances inégales qui séparent les lettres. J’ai dit un genre riche, parce que, comme nous l’avons vu dans le second chapitre, plus d’espèces varient en moyenne dans un genre riche que dans un genre pauvre, et que les espèces variables des genres riches présentent un plus grand nombre de variétés. Nous avons vu aussi que les espèces les plus communes et les plus répandues varient plus que les espèces rares dont l’habitat est restreint. Supposons que A représente une espèce variable commune très répandue, appartenant à un genre riche dans son propre pays. Les lignes ponctuées divergentes, de longueur inégale, partant de A, peuvent représenter ses descendants variables. On suppose que les variations sont très légères et de la nature la plus diverse ; qu’elles ne paraissent pas toutes simultanément, mais souvent après de longs intervalles de temps, et qu’elles ne persistent pas non plus pendant des périodes égales. Les variations avantageuses seules persistent, ou, en d’autres termes, font l’objet de la sélection naturelle. C’est là que se manifeste l’importance du principe des avantages résultant de la divergence des caractères ; car ce principe détermine ordinairement les variations les plus divergentes et les plus différentes (représentées par les lignes ponctuées extérieures), que la sélection naturelle fixe et accumule. Quand une ligne ponctuée atteint une des lignes horizontales et que le point de contact est indiqué par une lettre minuscule, accompagnée d’un chiffre, on suppose qu’il s’est accumulé une quantité suffisante de variations pour former une variété bien tranchée, c’est-à-dire telle qu’on croirait devoir l’indiquer dans un ouvrage sur la zoologie systématique.

Les intervalles entre les lignes horizontales du diagramme peuvent représenter chacun mille générations ou plus. Supposons qu’après mille générations l’espèce A ait produit deux variétés bien tranchées, c’est-à-dire a1 et m1. Ces deux variétés se trouvent généralement encore placées dans des conditions analogues à celles qui ont déterminé des variations chez leurs ancêtres, d’autant que la variabilité est en elle-même héréditaire ; en conséquence, elles tendent aussi à varier, et ordinairement de la même manière que leurs ancêtres. En outre, ces deux variétés, n’étant que des formes légèrement modifiées, tendent à hériter des avantages qui ont rendu leur prototype A plus nombreux que la plupart des autres habitants du même pays ; elles participent aussi aux avantages plus généraux qui ont rendu le genre auquel appartiennent leurs ancêtres un genre riche dans son propre pays. Or, toutes ces circonstances sont favorables à la production de nouvelles variétés.

Si donc ces deux variétés sont variables, leurs variations les plus divergentes persisteront ordinairement pendant les mille générations suivantes. Après cet intervalle, on peut supposer que la variété a1 a produit la variété a², laquelle, grâce au principe de la divergence, diffère plus de A que ne le faisait la variété a1. On peut supposer aussi que la variété m1 a produit, au bout du même laps de temps, deux variétés : m² et s², différant l’une de l’autre, et différant plus encore de leur souche commune A. Nous pourrions continuer à suivre ces variétés pas à pas pendant une période quelconque. Quelques variétés, après chaque série de mille générations, auront produit une seule variété, mais toujours plus modifiée ; d’autres auront produit deux ou trois variétés ; d’autres, enfin, n’en auront pas produit. Ainsi, les variétés, ou les descendants modifiés de la souche commune A, augmentent ordinairement en nombre en revêtant des caractères de plus en plus divergents. Le diagramme représente cette série jusqu’à la dix-millième génération, et, sous une forme condensée et simplifiée, jusqu’à la quatorze-millième.

Je ne prétends pas dire, bien entendu, que cette série soit aussi régulière qu’elle l’est dans le diagramme, bien qu’elle ait été représentée de façon assez irrégulière ; je ne prétends pas dire non plus que ces progrès soient incessants ; il est beaucoup plus probable, au contraire, que chaque forme persiste sans changement pendant de longues périodes, puis qu’elle est de nouveau soumise à des modifications. Je ne prétends pas dire non plus que les variétés les plus divergentes persistent toujours ; une forme moyenne peut persister pendant longtemps et peut, ou non, produire plus d’un descendant modifié. La sélection naturelle, en effet, agit toujours en raison des places vacantes, ou de celles qui ne sont pas parfaitement occupées par d’autres êtres, et cela implique des rapports infiniment complexes. Mais, en règle générale, plus les descendants d’une espèce quelconque se modifient sous le rapport de la conformation, plus ils ont de chances de s’emparer de places et plus leur descendance modifiée tend à augmenter. Dans notre diagramme, la ligne de descendance est interrompue à des intervalles réguliers par des lettres minuscules chiffrées, indiquant les formes successives qui sont devenues suffisamment distinctes pour qu’on les reconnaisse comme variétés ; il va sans dire que ces points sont imaginaires et qu’on aurait pu les placer n’importe où, en laissant des intervalles assez longs pour permettre l’accumulation d’une somme considérable de variations divergentes.

Comme tous les descendants modifiés d’une espèce commune et très répandue, appartenant à un genre riche, tendent à participer aux avantages qui ont donné à leur ancêtre la prépondérance dans la lutte pour l’existence, ils se multiplient ordinairement en nombre, en même temps que leurs caractères deviennent plus divergents : ce fait est représenté dans le diagramme par les différentes branches divergentes partant de A. Les descendants modifiés des branches les plus récentes et les plus perfectionnées tendent à prendre la place des branches plus anciennes et moins perfectionnées, et par conséquent à les éliminer ; les branches inférieures du diagramme, qui ne parviennent pas jusqu’aux lignes horizontales supérieures, indiquent ce fait. Dans quelques cas, sans doute, les modifications portent sur une seule ligne de descendance, et le nombre des descendants modifiés ne s’accroît pas, bien que la somme des modifications divergentes ait pu augmenter. Ce cas serait représenté dans le diagramme si toutes les lignes partant de A étaient enlevées, à l’exception de celles allant de a1 à a10. Le cheval de course anglais et le limier anglais ont évidemment divergé lentement de leur souche primitive de la façon que nous venons d’indiquer, sans qu’aucun d’eux ait produit des branches ou des races nouvelles.

Supposons que, après dix mille générations, l’espèce A ait produit trois formes : a10, f10 et m10, qui, ayant divergé en caractères pendant les générations successives, en sont arrivées à différer largement, mais peut-être inégalement les unes des autres et de leur souche commune. Si nous supposons que la somme des changements entre chaque ligne horizontale du diagramme soit excessivement minime, ces trois formes ne seront encore que des variétés bien tranchées ; mais nous n’avons qu’à supposer un plus grand nombre de générations, ou une modification un peu plus considérable à chaque degré, pour convertir ces trois formes en espèces douteuses, ou même en espèces bien définies. Le diagramme indique donc les degrés au moyen desquels les petites différences, séparant les variétés, s’accumulent au point de former les grandes différences séparant les espèces. En continuant la même marche pendant un plus grand nombre de générations, ce qu’indique le diagramme sous une forme condensée et simplifiée, nous obtenons huit espèces, a14 à m14, descendant toutes de A. C’est ainsi, je crois, que les espèces se multiplient et que les genres se forment.

Il est probable que, dans un genre riche, plus d’une espèce doit varier. J’ai supposé, dans le diagramme, qu’une seconde espèce, l’a produit, par une marche analogue, après dix mille générations, soit deux variétés bien tranchées, w10 et z10, soit deux espèces, selon la somme de changements que représentent les lignes horizontales. Après quatorze mille générations, on suppose que six nouvelles espèces, n14 à z14, ont été produites. Dans un genre quelconque, les espèces qui diffèrent déjà beaucoup les unes des autres tendent ordinairement à produire le plus grand nombre de descendants modifiés, car ce sont elles qui ont le plus de chances de s’emparer de places nouvelles et très différentes dans l’économie de la nature. Aussi ai-je choisi dans le diagramme l’espèce extrême A et une autre espèce presque extrême I, comme celles qui ont beaucoup varié, et qui ont produit de nouvelles variétés et de nouvelles espèces. Les autres neuf espèces de notre genre primitif, indiquées par des lettres majuscules, peuvent continuer, pendant des périodes plus ou moins longues, à transmettre à leurs descendants leurs caractères non modifiés ; ceci est indiqué dans le diagramme par les lignes ponctuées qui se prolongent plus ou moins loin.

Mais, pendant la marche des modifications, représentées dans le diagramme, un autre de nos principes, celui de l’extinction, a dû jouer un rôle important. Comme, dans chaque pays bien pourvu d’habitants, la sélection naturelle agit nécessairement en donnant à une forme, qui fait l’objet de son action, quelques avantages sur d’autres formes dans la lutte pour l’existence, il se produit une tendance constante chez les descendants perfectionnés d’une espèce quelconque à supplanter et à exterminer, à chaque génération, leurs prédécesseurs et leur souche primitive. Il faut se rappeler, en effet, que la lutte la plus vive se produit ordinairement entre les formes qui sont les plus voisines les unes des autres, sous le rapport des habitudes, de la constitution et de la structure. En conséquence, toutes les formes intermédiaires entre la forme la plus ancienne et la forme la plus nouvelle, c’est-à-dire entre les formes plus ou moins perfectionnées de la même espèce, aussi bien que l’espèce souche elle-même, tendent ordinairement à s’éteindre. Il en est probablement de même pour beaucoup de lignes collatérales tout entières, vaincues par des formes plus récentes et plus perfectionnées. Si, cependant, le descendant modifié d’une espèce pénètre dans quelque région distincte, ou s’adapte rapidement à quelque région tout à fait nouvelle, il ne se trouve pas en concurrence avec le type primitif et tous deux peuvent continuer à exister.

Si donc on suppose que notre diagramme représente une somme considérable de modifications, l’espèce A et toutes les premières variétés qu’elle a produites, auront été éliminées et remplacées par huit nouvelles espèces, a14 à m14 ; et l’espèce I par six nouvelles espèces, n14 à z14.

Mais nous pouvons aller plus loin encore. Nous avons supposé que les espèces primitives du genre dont nous nous occupons se ressemblent les unes aux autres à des degrés inégaux ; c’est là ce qui se présente souvent dans la nature. L’espèce A est donc plus voisine des espèces B, C, D que des autres espèces, et l’espèce I est plus voisine des espèces G, H, K, L que des premières. Nous avons supposé aussi que ces deux espèces, A et I, sont très communes et très répandues, de telle sorte qu’elles devaient, dans le principe, posséder quelques avantages sur la plupart des autres espèces appartenant au même genre. Les espèces représentatives, au nombre de quatorze à la quatorzième génération, ont probablement hérité de quelques-uns de ces avantages ; elles se sont, en outre, modifiées, perfectionnées de diverses manières, à chaque génération successive, de façon à se mieux adapter aux nombreuses places vacantes dans l’économie naturelle du pays qu’elles habitent. Il est donc très probable qu’elles ont exterminé, pour les remplacer, non seulement les représentants non modifiés des souches mères A et I, mais aussi quelques-unes des espèces primitives les plus voisines de ces souches. En conséquence, il doit rester à la quatorzième génération très peu de descendants des espèces primitives. Nous pouvons supposer qu’une espèce seulement, l’espèce F, sur les deux espèces E et F, les moins voisines des deux espèces primitives A, I, a pu avoir des descendants jusqu’à cette dernière génération.

Ainsi que l’indique notre diagramme, les onze espèces primitives sont désormais représentées par quinze espèces. En raison de la tendance divergente de la sélection naturelle, la somme de différence des caractères entre les espèces a14 et z14 doit être beaucoup plus considérable que la différence qui existait entre les individus les plus distincts des onze espèces primitives. Les nouvelles espèces, en outre, sont alliées les unes aux autres d’une manière toute différente. Sur les huit descendants de A, ceux indiqués par les lettres a14, q14 et p14 sont très voisins, parce que ce sont des branches récentes de a10 ; b14 et f14, ayant divergé à une période beaucoup plus ancienne de a5, sont, dans une certaine mesure, distincts de ces trois premières espèces ; et enfin o14, e14 et m14 sont très-voisins les uns des autres ; mais, comme elles ont divergé de A au commencement même de cette série de modifications, ces espèces doivent être assez différentes des cinq autres, pour constituer sans doute un sous-genre ou un genre distinct.

Les six descendants de I forment deux sous-genres ou deux genres distincts. Mais, comme, l’espèce primitive I différait beaucoup de A, car elle se trouvait presque à l’autre extrémité du genre primitif, les six espèces descendant de I, grâce à l’hérédité seule, doivent différer considérablement des huit espèces descendant de A ; en outre, nous avons supposé que les deux groupes ont continué à diverger dans des directions différentes. Les espèces intermédiaires, et c’est là une considération fort importante, qui reliaient les espèces originelles A et I, se sont toutes éteintes, à l’exception de F, qui seul a laissé des descendants. En conséquence, les six nouvelles espèces descendant de I, et les huit espèces descendant de A, devront être classées comme des genres très distincts, ou même comme des sous-familles distinctes.

C’est ainsi, je crois, que deux ou plusieurs genres descendent, par suite de modifications, de deux ou de plusieurs espèces d’un même genre. Ces deux ou plusieurs espèces souches descendent aussi, à leur tour, de quelque espèce d’un genre antérieur. Cela est indiqué, dans notre diagramme, par les lignes ponctuées placées au-dessous des lettres majuscules, lignes convergeant en groupe vers un seul point. Ce point représente une espèce, l’ancêtre supposé de nos sous-genres et de nos genres. Il est utile de s’arrêter un instant pour considérer le caractère de la nouvelle espèce F14, laquelle, avons-nous supposé, n’a plus beaucoup divergé, mais a conservé la forme de F, soit avec quelques légères modifications, soit sans aucun changement. Les affinités de cette espèce vis-à-vis des quatorze autres espèces nouvelles doivent être nécessairement très curieuses. Descendue d’une forme située à peu près à égale distance entre les espèces souches A et I, que nous supposons éteintes et inconnues, elle doit présenter, dans une certaine mesure, un caractère intermédiaire entre celui des deux groupes descendus de cette même espèce. Mais, comme le caractère de ces deux groupes s’est continuellement écarté du type souche, la nouvelle espèce F14 ne constitue pas un intermédiaire immédiat entre eux ; elle constitue plutôt un intermédiaire entre les types des deux groupes. Or, chaque naturaliste peut se rappeler, sans doute, des cas analogues.

Nous avons supposé, jusqu’à présent, que chaque ligne horizontale du diagramme représente mille générations ; mais chacune d’elles pourrait représenter un million de générations, ou même davantage ; chacune pourrait même représenter une des couches successives de la croûte terrestre, dans laquelle on trouve des fossiles. Nous aurons à revenir sur ce point, dans notre chapitre sur la géologie, et nous verrons alors, je crois, que le diagramme jette quelque lumière sur les affinités des êtres éteints. Ces êtres, bien qu’appartenant ordinairement aux mêmes ordres, aux mêmes familles ou aux mêmes genres que ceux qui existent aujourd’hui, présentent souvent cependant, dans une certaine mesure, des caractères intermédiaires entre les groupes actuels ; nous pouvons le comprendre d’autant mieux que les espèces existantes vivaient à différentes époques reculées, alors que les lignes de descendance avaient moins divergé.

Je ne vois aucune raison qui oblige à limiter à la formation des genres seuls la série de modifications que nous venons d’indiquer. Si nous supposons que, dans le diagramme, la somme des changements représentée par chaque groupe successif de lignes ponctuées divergentes est très grande, les formes a14 à p14, b14 et f14, o14 à m14 formeront trois genres bien distincts. Nous aurons aussi deux genres très distincts descendant de I et différant très considérablement des descendants de A. Ces deux groupes de genres formeront ainsi deux familles ou deux ordres distincts, selon la somme des modifications divergentes que l’on suppose représentée par le diagramme. Or, les deux nouvelles familles, ou les deux ordres nouveaux, descendent de deux espèces appartenant à un même genre primitif, et on peut supposer que ces espèces descendent de formes encore plus anciennes et plus inconnues.

Nous avons vu que, dans chaque pays, ce sont les espèces appartenant aux genres les plus riches qui présentent le plus souvent des variétés ou des espèces naissantes. On aurait pu s’y attendre ; en effet, la sélection naturelle agissant seulement sur les individus ou les formes qui, grâce à certaines qualités, l’emportent sur d’autres dans la lutte pour l’existence, elle exerce principalement son action sur ceux qui possèdent déjà certains avantages ; or, l’étendue d’un groupe quelconque prouve que les espèces qui le composent ont hérité de quelques qualités possédées par un ancêtre commun. Aussi, la lutte pour la production de descendants nouveaux et modifiés s’établit principalement entre les groupes les plus riches qui essayent tous de se multiplier. Un groupe riche l’emporte lentement sur un autre groupe considérable, le réduit en nombre et diminue ainsi ses chances de variation et de perfectionnement. Dans un même groupe considérable, les sous-groupes les plus récents et les plus perfectionnés, augmentant sans cesse, s’emparant à chaque instant de nouvelles places dans l’économie de la nature, tendent constamment aussi à supplanter et à détruire les sous-groupes les plus anciens et les moins perfectionnés Enfin, les groupes et les sous-groupes peu nombreux et vaincus finissent par disparaître.

Si nous portons les yeux sur l’avenir, nous pouvons prédire que les groupes d’êtres organisés qui sont aujourd’hui riches et dominants, qui ne sont pas encore entamés, c’est-à-dire qui n’ont pas souffert encore la moindre extinction, doivent continuer à augmenter en nombre pendant de longues périodes. Mais quels groupes finiront par prévaloir ? C’est là ce que personne ne peut prévoir, car nous savons que beaucoup de groupes, autrefois très développés, sont aujourd’hui éteints. Si l’on s’occupe d’un avenir encore plus éloigné, on peut prédire que, grâce à l’augmentation continue et régulière des plus grands groupes, une foule de petits groupes doivent disparaître complètement sans laisser de descendants modifiés, et qu’en conséquence, bien peu d’espèces vivant à une époque quelconque doivent avoir des descendants après un laps de temps considérable. J’aurai à revenir sur ce point dans le chapitre sur la classification ; mais je puis ajouter que, selon notre théorie, fort peu d’espèces très anciennes doivent avoir des représentants à l’époque actuelle ; or, comme tous les descendants de la même espèce forment une classe, il est facile de comprendre comment il se fait qu’il y ait si peu de classes dans chaque division principale du royaume animal et du royaume végétal. Bien que peu des espèces les plus anciennes aient laissé des descendants modifiés, cependant, à d’anciennes périodes géologiques, la terre a pu être presque aussi peuplée qu’elle l’est aujourd’hui d’espèces appartenant à beaucoup de genres, de familles, d’ordres et de classes.

DU PROGRÈS POSSIBLE DE L’ORGANISATION.

La sélection naturelle agit exclusivement au moyen de la conservation et de l’accumulation des variations qui sont utiles à chaque individu dans les conditions organiques et inorganiques où il peut se trouver placé à toutes les périodes de la vie. Chaque être, et c’est là le but final du progrès, tend à se perfectionner de plus en plus relativement à ces conditions. Ce perfectionnement conduit inévitablement au progrès graduel de l’organisation du plus grand nombre des êtres vivants dans le monde entier. Mais nous abordons ici un sujet fort compliqué, car les naturalistes n’ont pas encore défini, d’une façon satisfaisante pour tous, ce que l’on doit entendre par « un progrès de l’organisation ». Pour les vertébrés, il s’agit clairement d’un progrès intellectuel et d’une conformation se rapprochant de celle de l’homme. On pourrait penser que la somme des changements qui se produisent dans les différentes parties et dans les différents organes, au moyen de développements successifs depuis l’embryon jusqu’à la maturité, suffit comme terme de comparaison ; mais il y a des cas, certains crustacés parasites par exemple, chez lesquels plusieurs parties de la conformation deviennent moins parfaites, de telle sorte que l’animal adulte n’est certainement pas supérieur à la larve. Le criterium de von Baer semble le plus généralement applicable et le meilleur, c’est-à-dire l’étendue de la différenciation des parties du même être et la spécialisation de ces parties pour différentes fonctions, ce à quoi j’ajouterai : à l’étal adulte ; ou, comme le dirait Milne-Edwards, le perfectionnement de la division du travail physiologique. Mais nous comprendrons bien vite quelle obscurité règne sur ce sujet, si nous étudions, par exemple, les poissons. En effet, certains naturalistes regardent comme les plus élevés dans l’échelle ceux qui, comme le requin, se rapprochent le plus des amphibies, tandis que d’autres naturalistes considèrent comme les plus élevés les poissons osseux ou téléostéens, parce qu’ils sont plus réellement pisciformes et diffèrent le plus des autres classes des vertébrés. L’obscurité du sujet nous frappe plus encore si nous étudions les plantes, pour lesquelles, bien entendu, le criterium de l’intelligence n’existe pas ; en effet, quelques botanistes rangent parmi les plantes les plus élevées celles qui présentent sur chaque fleur, à l’état complet de développement, tous les organes, tels que : sépales, pétales, étamines et pistils, tandis que d’autres botanistes, avec plus de raison probablement, accordent le premier rang aux plantes dont les divers organes sont très modifiés et en nombre réduit.

Si nous adoptons, comme criterium d’une haute organisation, la somme de différenciations et de spécialisations des divers organes chez chaque individu adulte, ce qui comprend le perfectionnement intellectuel du cerveau, la sélection naturelle conduit clairement à ce but. Tous les physiologistes, en effet, admettent que la spécialisation des organes est un avantage pour l’individu, en ce sens que, dans cet état, les organes accomplissent mieux leurs fonctions ; en conséquence, l’accumulation des variations tendant à la spécialisation, cette accumulation entre dans le ressort de la sélection naturelle. D’un autre côté, si l’on se rappelle que tous les êtres organisés tendent à se multiplier rapidement et à s’emparer de toutes les places inoccupées, ou moins bien occupées dans l’économie de la nature, il est facile de comprendre qu’il est très possible que la sélection naturelle prépare graduellement un individu pour une situation dans laquelle plusieurs organes lui seraient superflus ou inutiles ; dans ce cas, il y aurait une rétrogradation réelle dans l’échelle de l’organisation. Nous discuterons avec plus de profit, dans le chapitre sur la succession géologique, la question de savoir si, en règle générale, l’organisation a fait des progrès certains depuis les périodes géologiques les plus reculées jusqu’à nos jours.

Mais pourra-t-on dire, si tous les êtres organisés tendent ainsi à s’élever dans l’échelle, comment se fait-il qu’une foule de formes inférieures existent encore dans le monde ? Comment se fait-il qu’il y ait, dans chaque grande classe, des formes beaucoup plus développées que certaines autres ? Pourquoi les formes les plus perfectionnées n’ont-elles pas partout supplanté et exterminé les formes inférieures ? Lamarck, qui croyait à une tendance innée et fatale de tous les êtres organisés vers la perfection, semble avoir si bien pressenti cette difficulté, qu’il a été conduit à supposer que des formes simples et nouvelles sont constamment produites par la génération spontanée. La science n’a pas encore prouvé le bien fondé de cette doctrine, quoi qu’elle puisse, d’ailleurs, nous révéler dans l’avenir. D’après notre théorie, l’existence persistante des organismes inférieurs n’offre aucune difficulté ; en effet, la sélection naturelle, ou la persistance du plus apte, ne comporte pas nécessairement un développement progressif, elle s’empare seulement des variations qui se présentent et qui sont utiles à chaque individu dans les rapports complexes de son existence. Et, pourrait-on dire, quel avantage y aurait-il, autant que nous pouvons en juger, pour un animalcule infusoire, pour un ver intestinal, ou même pour un ver de terre, à acquérir une organisation supérieure ? Si cet avantage n’existe pas, la sélection naturelle n’améliore que fort peu ces formes, et elle les laisse, pendant des périodes infinies, dans leurs conditions inférieures actuelles. Or, la géologie nous enseigne que quelques formes très inférieures, comme les infusoires et les rhizopodes, ont conservé leur état actuel depuis une période immense. Mais il serait bien téméraire de supposer que la plupart des nombreuses formes inférieures existant aujourd’hui n’ont fait aucun progrès depuis l’apparition de la vie sur la terre ; en effet, tous les naturalistes qui ont disséqué quelques-uns de ces êtres, qu’on est d’accord pour placer au plus bas de l’échelle, doivent avoir été frappés de leur organisation si étonnante et si belle.

Les mêmes remarques peuvent s’appliquer aussi, si nous examinons les mêmes degrés d’organisation, dans chacun des grands groupes ; par exemple, la coexistence des mammifères et des poissons chez les vertébrés, celle de l’homme et de l’ornithorhynque chez les mammifères, celle du requin et du branchiostome (Amphioxus) chez les poissons. Ce dernier poisson, par l’extrême simplicité de sa conformation, se rapproche beaucoup des invertébrés. Mais les mammifères et les poissons n’entrent guère en lutte les uns avec les autres ; les progrès de la classe entière des mammifères, ou de certains individus de cette classe, en admettant même que ces progrès les conduisent à la perfection, ne les amèneraient pas à prendre la place des poissons. Les physiologistes croient que, pour acquérir toute l’activité dont il est susceptible, le cerveau doit être baigné de sang chaud, ce qui exige une respiration aérienne. Les mammifères à sang chaud se trouvent donc placés dans une position fort désavantageuse quand ils habitent l’eau ; en effet, ils sont obligés de remonter continuellement à la surface pour respirer. Chez les poissons, les membres de la famille du requin ne tendent pas à supplanter le branchiostome, car ce dernier, d’après Fritz Muller, a pour seul compagnon et pour seul concurrent, sur les côtes sablonneuses et stériles du Brésil méridional, un annélide anormal. Les trois ordres inférieurs de mammifères, c’est-à-dire les marsupiaux, les édentés et les rongeurs, habitent, dans l’Amérique méridionale, la même région que de nombreuses espèces de singes, et, probablement, ils s’inquiètent fort peu les uns des autres. Bien que l’organisation ait pu, en somme, progresser, et qu’elle progresse encore dans le monde entier, il y aura cependant toujours bien des degrés de perfection ; en effet, le perfectionnement de certaines classes entières, ou de certains individus de chaque classe, ne conduit pas nécessairement à l’extinction des groupes avec lesquels ils ne se trouvent pas en concurrence active. Dans quelques cas, comme nous le verrons bientôt, les organismes inférieurs paraissent avoir persisté jusqu’à l’époque actuelle, parce qu’ils habitent des régions restreintes et fermées, où ils ont été soumis à une concurrence moins active, et où leur petit nombre a retardé la production de variations favorables.

Enfin, je crois que beaucoup d’organismes inférieurs existent encore dans le monde en raison de causes diverses. Dans quelques cas, des variations, ou des différences individuelles d’une nature avantageuse, ne se sont jamais présentées, et, par conséquent, la sélection naturelle n’a pu ni agir ni les accumuler. Dans aucun cas probablement il ne s’est pas écoulé assez de temps pour permettre tout le développement possible. Dans quelques cas il doit y avoir eu ce que nous devons désigner sous le nom de rétrogradation d’organisation. Mais la cause principale réside dans ce fait que, étant données de très simples conditions d’existence, une haute organisation serait inutile, peut-être même désavantageuse, en ce qu’étant d’une nature plus délicate, elle se dérangerait plus facilement, et serait aussi plus facilement détruite.

On s’est demandé comment, lors de la première apparition de la vie, alors que tous les êtres organisés, pouvons-nous croire, présentaient la conformation la plus simple, les premiers degrés du progrès ou de la différenciation des parties ont pu se produire. M. Herbert Spencer répondrait probablement que, dès qu’un organisme unicellulaire simple est devenu, par la croissance ou par la division, un composé de plusieurs cellules, ou qu’il s’est fixé à quelques surfaces d’appui, la loi qu’il a établie est entrée en action, et il exprime ainsi cette loi : « Les unités homologues de toute force se différencient à mesure que leurs rapports avec les forces incidentes sont différents. » Mais, comme nous ne connaissons aucun fait qui puisse nous servir de point de comparaison, toute spéculation sur ce sujet serait presque inutile. C’est toutefois une erreur de supposer qu’il n’y a pas eu lutte pour l’existence, et, par conséquent, pas de sélection naturelle, jusqu’à ce que beaucoup de formes se soient produites ; il peut se produire des variations avantageuses dans une seule espèce, habitant une station isolée, et toute la masse des individus peut aussi, en conséquence, se modifier, et deux formes distinctes se produire. Mais, comme je l’ai fait remarquer à la fin de l’introduction, personne ne doit s’étonner de ce qu’il reste encore tant de points inexpliqués sur l’origine des espèces, si l’on réfléchit à la profonde ignorance dans laquelle nous sommes sur les rapports mutuels des habitants du monde à notre époque, et bien plus encore pendant les périodes écoulées.

CONVERGENCE DES CARACTÈRES.

M. H.-C. Watson pense que j’ai attribué trop d’importance à la divergence des caractères (dont il paraît, d’ailleurs, admettre l’importance) et que ce qu’on peut appeler leur convergence a dû également jouer un rôle. Si deux espèces, appartenant à deux genres distincts, quoique voisins, ont toutes deux produit un grand nombre de formes nouvelles et divergentes, il est concevable que ces formes puissent assez se rapprocher les unes des autres pour qu’on doive placer toutes les classes dans le même genre ; en conséquence, les descendants de deux genres distincts convergeraient en un seul. Mais, dans la plupart des cas, il serait bien téméraire d’attribuer à la convergence une analogie étroite et générale de conformation chez les descendants modifiés de formes très distinctes. Les forces moléculaires déterminent seules la forme d’un cristal ; il n’est donc pas surprenant que des substances différentes puissent parfois revêtir la même forme. Mais nous devons nous souvenir que, chez les êtres organisés, la forme de chacun d’eux dépend d’une infinité de rapports complexes, à savoir : les variations qui se sont manifestées, dues à des causes trop inexplicables pour qu’on puisse les analyser, — la nature des variations qui ont persisté ou qui ont fait l’objet de la sélection naturelle, lesquelles dépendent des conditions physiques ambiantes, et, dans une plus grande mesure encore, des organismes environnants avec lesquels chaque individu est entré en concurrence, — et, enfin, l’hérédité (élément fluctuant en soi) d’innombrables ancêtres dont les formes ont été déterminées par des rapports également complexes. Il serait incroyable que les descendants de deux organismes qui, dans l’origine, différaient d’une façon prononcée, aient jamais convergé ensuite d’assez près pour que leur organisation totale s’approche de l’identité. Si cela était, nous retrouverions la même forme, indépendamment de toute connexion génésique, dans des formations géologiques très séparées ; or, l’étude des faits observés s’oppose à une semblable conséquence.

M. Watson objecte aussi que l’action continue de la sélection naturelle, accompagnée de la divergence des caractères, tendrait à la production d’un nombre infini de formes spécifiques. Il semble probable, en ce qui concerne tout au moins les conditions physiques, qu’un nombre suffisant d’espèces s’adapterait bientôt à toutes les différences de chaleur, d’humidité, etc., quelque considérables que soient ces différences ; mais j’admets complètement que les rapports réciproques des êtres organisés sont plus importants. Or, à mesure que le nombre des espèces s’accroît dans un pays quelconque, les conditions organiques de la vie doivent devenir de plus en plus complexes. En conséquence, il ne semble y avoir, à première vue, aucune limite à la quantité des différences avantageuses de structure et, par conséquent aussi, au nombre des espèces qui pourraient être produites. Nous ne savons même pas si les régions les plus riches possèdent leur maximum de formes spécifiques : au cap de Bonne-Espérance et en Australie, où vivent déjà un nombre si étonnant d’espèces, beaucoup de plantes européennes se sont acclimatées. Mais la géologie nous démontre que, depuis une époque fort ancienne de la période tertiaire, le nombre des espèces de coquillages et, depuis le milieu de cette même période, le nombre des espèces de mammifères n’ont pas beaucoup augmenté, en admettant même qu’ils aient augmenté un peu. Quel est donc le frein qui s’oppose à une augmentation indéfinie du nombre des espèces ? La quantité des individus (je n’entends pas dire le nombre des formes spécifiques) pouvant vivre dans une région doit avoir une limite, car cette quantité dépend en grande mesure des conditions extérieures ; par conséquent, si beaucoup d’espèces habitent une même région, chacune de ces espèces, presque toutes certainement, ne doivent être représentées que par un petit nombre d’individus ; en outre, ces espèces sont sujettes à disparaître en raison de changements accidentels survenus dans la nature des saisons, ou dans le nombre de leurs ennemis. Dans de semblables cas, l’extermination est rapide, alors qu’au contraire la production de nouvelles espèces est toujours fort lente. Supposons, comme cas extrême, qu’il y ait en Angleterre autant d’espèces que d’individus : le premier hiver rigoureux, ou un été très sec, causerait l’extermination de milliers d’espèces. Les espèces rares, et chaque espèce deviendrait rare si le nombre des espèces d’un pays s’accroissait indéfiniment, présentent, nous avons expliqué en vertu de quel principe, peu de variations avantageuses dans un temps donné ; en conséquence, la production de nouvelles formes spécifiques serait considérablement retardée. Quand une espèce devient rare, les croisements consanguins contribuent à hâter son extinction ; quelques auteurs ont pensé qu’il fallait, en grande partie, attribuer à ce fait la disparition de l’aurochs en Lithuanie, du cerf en Corse et de l’ours en Norwège, etc. Enfin, et je suis disposé à croire que c’est là l’élément le plus important, une espèce dominante, ayant déjà vaincu plusieurs concurrents dans son propre habitat, tend à s’étendre et à en supplanter beaucoup d’autres. Alphonse de Candolle a démontré que les espèces qui se répandent beaucoup tendent ordinairement à se répandre de plus en plus ; en conséquence, ces espèces tendent à supplanter et à exterminer plusieurs espèces dans plusieurs régions et à arrêter ainsi l’augmentation désordonnée des formes spécifiques sur le globe. Le docteur Hooker a démontré récemment qu’à l’extrémité sud-est de l’Australie, qui paraît avoir été envahie par de nombreux individus venant de différentes parties du globe, les différentes espèces australiennes indigènes ont considérablement diminué en nombre. Je ne prétends pas déterminer quel poids il convient d’attacher à ces diverses considérations ; mais ces différentes causes réunies doivent limiter dans chaque pays la tendance à un accroissement indéfini du nombre des formes spécifiques.

RÉSUMÉ DU CHAPITRE.

Si, au milieu des conditions changeantes de l’existence, les êtres organisés présentent des différences individuelles dans presque toutes les parties de leur structure, et ce point n’est pas contestable ; s’il se produit, entre les espèces, en raison de la progression géométrique de l’augmentation des individus, une lutte sérieuse pour l’existence à un certain âge, à une certaine saison, ou pendant une période quelconque de leur vie, et ce point n’est certainement pas contestable ; alors, en tenant compte de l’infinie complexité des rapports mutuels de tous les êtres organisés et de leurs rapports avec les conditions de leur existence, ce qui cause une diversité infinie et avantageuse des structures, des constitutions et des habitudes, il serait très extraordinaire qu’il ne se soit jamais produit des variations utiles à la prospérité de chaque individu, de la même façon qu’il s’est produit tant de variations utiles à l’homme. Mais, si des variations utiles à un être organisé quelconque se présentent quelquefois, assurément les individus qui en sont l’objet ont la meilleure chance de l’emporter dans la lutte pour l’existence ; puis, en vertu du principe si puissant de l’hérédité, ces individus tendent à laisser des descendants ayant le même caractère qu’eux. J’ai donné le nom de sélection naturelle à ce principe de conservation ou de persistance du plus apte. Ce principe conduit au perfectionnement de chaque créature, relativement aux conditions organiques et inorganiques de son existence ; et, en conséquence, dans la plupart des cas, à ce que l’on peut regarder comme un progrès de l’organisation. Néanmoins, les formes simples et inférieures persistent longtemps lorsqu’elles sont bien adaptées aux conditions peu complexes de leur existence.

En vertu du principe de l’hérédité des caractères aux âges correspondants, la sélection naturelle peut agir sur l’œuf, sur la graine ou sur le jeune individu, et les modifier aussi facilement qu’elle peut modifier l’adulte. Chez un grand nombre d’animaux, la sélection sexuelle vient en aide à la sélection ordinaire, en assurant aux mâles les plus vigoureux et les mieux adaptés le plus grand nombre de descendants. La sélection sexuelle développe aussi chez les mâles des caractères qui leur sont utiles dans leurs rivalités ou dans leurs luttes avec d’autres mâles, caractères qui peuvent se transmettre à un sexe seul ou aux deux sexes, suivant la forme d’hérédité prédominante chez l’espèce.

La sélection naturelle a-t-elle réellement joué ce rôle ? a-t-elle réellement adapté les formes diverses de la vie à leurs conditions et à leurs stations différentes ? C’est en pesant les faits exposés dans les chapitres suivants que nous pourrons en juger. Mais nous avons déjà vu comment la sélection naturelle détermine l’extinction ; or, l’histoire et la géologie nous démontrent clairement quel rôle l’extinction a joué dans l’histoire zoologique du monde. La sélection naturelle conduit aussi à la divergence des caractères ; car, plus les êtres organisés diffèrent les uns les autres sous le rapport de la structure, des habitudes et de la constitution, plus la même région peut en nourrir un grand nombre ; nous en avons eu la preuve en étudiant les habitants d’une petite région et les productions acclimatées. Par conséquent, pendant la modification des descendants d’une espèce quelconque, pendant la lutte incessante de toutes les espèces pour s’accroître en nombre, plus ces descendants deviennent différents, plus ils ont de chances de réussir dans la lutte pour l’existence. Aussi, les petites différences qui distinguent les variétés d’une même espèce tendent régulièrement à s’accroître jusqu’à ce qu’elles deviennent égales aux grandes différences qui existent entre les espèces d’un même genre, ou même entre des genres distincts.

Nous avons vu que ce sont les espèces communes très répandues et ayant un habitat considérable, et qui, en outre, appartiennent aux genres les plus riches de chaque classe, qui varient le plus, et que ces espèces tendent à transmettre à leurs descendants modifiés cette supériorité qui leur assure aujourd’hui la domination dans leur propre pays. La sélection naturelle, comme nous venons de le faire remarquer, conduit à la divergence des caractères et à l’extinction complète des formes intermédiaires et moins perfectionnées. En partant de ces principes, on peut expliquer la nature des affinités et les distinctions ordinairement bien définies qui existent entre les innombrables êtres organisés de chaque classe à la surface du globe. Un fait véritablement étonnant et que nous méconnaissons trop, parce que nous sommes peut-être trop familiarisés avec lui, c’est que tous les animaux et toutes les plantes, tant dans le temps que dans l’espace, se trouvent réunis par groupes subordonnés à d’autres groupes d’une même manière que nous remarquons partout, c’est-à-dire que les variétés d’une même espèce les plus voisines les unes des autres, et que les espèces d’un même genre moins étroitement et plus inégalement alliées, forment des sections et des sous-genres ; que les espèces de genres distincts encore beaucoup moins proches et, enfin, que les genres plus ou moins semblables forment des sous-familles, des familles, des ordres, des sous-classes et des classes. Les divers groupes subordonnés d’une classe quelconque ne peuvent pas être rangés sur une seule ligne, mais semblent se grouper autour de certains points, ceux-là autour d’autres, et ainsi de suite en cercles presque infinis. Si les espèces avaient été créées indépendamment les unes des autres, on n’aurait pu expliquer cette sorte de classification ; elle s’explique facilement, au contraire, par l’hérédité et par l’action complexe de la sélection naturelle, produisant l’extinction et la divergence des caractères, ainsi que le démontre notre diagramme.

On a quelquefois représenté sous la figure d’un grand arbre les affinités de tous les êtres de la même classe, et je crois que cette image est très juste sous bien des rapports. Les rameaux et les bourgeons représentent les espèces existantes ; les branches produites pendant les années précédentes représentent la longue succession des espèces éteintes. À chaque période de croissance, tous les rameaux essayent de pousser des branches de toutes parts, de dépasser et de tuer les rameaux et les branches environnantes, de la même façon que les espèces et les groupes d’espèces ont, dans tous les temps, vaincu d’autres espèces dans la grande lutte pour l’existence. Les bifurcations du tronc, divisées en grosses branches, et celles-ci en branches moins grosses et plus nombreuses, n’étaient autrefois, alors que l’arbre était jeune, que des petits rameaux bourgeonnants ; or, cette relation entre les anciens bourgeons et les nouveaux au moyen des branches ramifiées représente bien la classification de toutes les espèces éteintes et vivantes en groupes subordonnés à d’autres groupes. Sur les nombreux rameaux qui prospéraient alors que l’arbre n’était qu’un arbrisseau, deux ou trois seulement, transformés aujourd’hui en grosses branches, ont survécu et portent les ramifications subséquentes ; de même, sur les nombreuses espèces qui vivaient pendant les périodes géologiques écoulées depuis si longtemps, bien peu ont laissé des descendants vivants et modifiés. Dès la première croissance de l’arbre, plus d’une branche a dû périr et tomber ; or, ces branches tombées de grosseur différente peuvent représenter les ordres, les familles et les genres tout entiers, qui n’ont plus de représentants vivants, et que nous ne connaissons qu’à l’état fossile. De même que nous voyons çà et là sur l’arbre une branche mince, égarée, qui a surgi de quelque bifurcation inférieure, et qui, par suite d’heureuses circonstances, est encore vivante, et atteint le sommet de l’arbre, de même nous rencontrons accidentellement quelque animal, comme l’ornithorhynque ou le lépidosirène, qui, par ses affinités, rattache, sous quelques rapports, deux grands embranchements de l’organisation, et qui doit probablement à une situation isolée d’avoir échappé à une concurrence fatale. De même que les bourgeons produisent de nouveaux bourgeons, et que ceux-ci, s’ils sont vigoureux, forment des branches qui éliminent de tous côtés les branches plus faibles, de même je crois que la génération en a agi de la même façon pour le grand arbre de la vie, dont les branches mortes et brisées sont enfouies dans les couches de l’écorce terrestre, pendant que ses magnifiques ramifications, toujours vivantes, et sans cesse renouvelées, en couvrent la surface.