100 percent.svg

La Science et l’Hypothèse/Chapitre 8

La bibliothèque libre.
Aller à la navigation Aller à la recherche
Flammarion (p. 148-166).

CHAPITRE VIII

Énergie et Thermodynamique.



Le système énergétique. — Les difficultés soulevées par la mécanique classique ont conduit certains esprits à lui préférer un système nouveau qu’ils appellent énergétique.

Le système énergétique a pris naissance à la suite de la découverte du principe de la conservation de l’énergie. C’est Helmholtz qui lui a donné sa forme définitive.

On commence par définir deux quantités qui jouent le rôle fondamental dans cette théorie. Ces deux quantités sont : d’une part, l’énergie cinétique ou force vive ; d’autre part, l’énergie potentielle.

Tous les changements que peuvent subir les corps de la nature sont régis par deux lois expérimentales :

1o La somme de l’énergie cinétique et de l’énergie potentielle est une constante. C’est le principe de la conservation de l’énergie.

2o Si un système de corps est dans la situation A à l’époque t0 et dans la situation B à l’époque t1, il va toujours de la première situation à la seconde par un chemin tel que la valeur moyenne de la différence entre les deux sortes d’énergie, dans l’intervalle de temps qui sépare les deux époques t0 et t1, soit aussi petite que possible.

C’est là le principe de Hamilton, qui est une des formes du principe de moindre action.

La théorie énergétique présente sur la théorie classique les avantages suivants :

1o Elle est moins incomplète ; c’est-à-dire que les principes de la conservation de l’énergie et de Hamilton nous apprennent plus que les principes fondamentaux de la théorie classique et excluent certains mouvements que la nature ne réalise pas et qui seraient compatibles avec la théorie classique ;

2o Elle nous dispense de l’hypothèse des atomes, qu’il était presque impossible d’éviter avec la théorie classique.

Mais elle soulève à son tour de nouvelles difficultés :

Les définitions des deux sortes d’énergie sont à peine plus aisées que celles de la force et de la masse dans le premier système. Cependant on s’en tirerait plus facilement, au moins dans les cas les plus simples.

Supposons un système isolé formé d’un certain nombre de points matériels ; supposons que ces points soient soumis à des forces ne dépendant que de leur position relative et de leurs distances mutuelles et indépendantes de leurs vitesses. En vertu du principe de la conservation de l’énergie, il devra y avoir une fonction des forces.

Dans ce cas simple, l’énoncé du principe de la conservation de l’énergie est d’une extrême simplicité. Une certaine quantité, accessible à l’expérience, doit demeurer constante. Cette quantité est la somme de deux termes ; le premier dépend seulement de la position des points matériels et est indépendant de leurs vitesses ; le second est proportionnel au carré de ces vitesses. Cette décomposition ne peut se faire que d’une seule manière.

Le premier de ces termes, que j’appellerai U, sera l’énergie potentielle ; le second, que j’appellerai T, sera l’énergie cinétique.

Il est vrai que si T + U est une constante, il en est de même d’une fonction quelconque de T + U,

(T + U).

Mais cette fonction (T + U) ne sera pas la somme de deux termes l’un indépendant des vitesses, l’autre proportionnel au carré de ces vitesses. Parmi les fonctions qui demeurent constantes, il n’y en a qu’une qui jouisse de cette propriété, c’est T + U (ou une fonction linéaire de T + U, ce qui ne fait rien, puisque cette fonction linéaire peut toujours être ramenée à T + U par un changement d’unité et d’origine). C’est alors ce que nous appellerons l’énergie ; c’est le premier terme que nous appellerons l’énergie potentielle et le second qui sera l’énergie cinétique. La définition des deux sortes d’énergie peut donc être poussée jusqu’au bout sans aucune ambiguïté.

Il en est de même de la définition des masses. L’énergie cinétique ou force vive s’exprime très simplement à l’aide des masses et des vitesses relatives de tous les points matériels, par rapport à l’un d’entre eux. Ces vitesses relatives sont accessibles à l’observation, et, quand nous aurons l’expression de l’énergie cinétique en fonction de ces vitesses relatives, les coefficients de cette expression nous donneront les masses.

Ainsi, dans ce cas simple, on peut définir les notions fondamentales sans difficulté. Mais les difficultés reparaissent dans les cas plus compliqués et, par exemple, si les forces, au lieu de dépendre seulement des distances, dépendent aussi des vitesses. Par exemple, Weber suppose que l’action mutuelle de deux molécules électriques dépend non seulement de leur distance, mais de leur vitesse et de leur accélération. Si les points matériels s’attiraient d’après une loi analogue, U dépendrait de la vitesse, et il pourrait contenir un terme proportionnel au carré de la vitesse.

Parmi les termes proportionnels aux carrés des vitesses, comment discerner ceux qui proviennent de T ou de U ? Comment, par conséquent, distinguer les deux parties de l’énergie ?

Mais il y a plus, Comment définir l’énergie elle-même ? Nous n’avons plus aucune raison de prendre comme définition T + U plutôt que toute autre fonction de T + U, quand a disparu la propriété qui caractérisait T + U, celle d’être la somme de deux termes d’une forme particulière.

Mais ce n’est pas tout, il faut tenir compte, non seulement de l’énergie mécanique proprement dite, mais des autres formes de l’énergie, chaleur, énergie chimique, énergie électrique, etc. Le principe de la conservation de l’énergie doit s’écrire :

T + U + Q = const.



où T représenterait l’énergie cinétique sensible, U l’énergie potentielle de position, dépendant seulement de la position des corps, Q l’énergie interne moléculaire, sous la forme thermique, chimique ou électrique.

Tout irait bien si ces trois termes étaient absolument distincts, si T était proportionnel au carré des vitesses, U indépendant de ces vitesses et de l’état des corps, Q indépendant des vitesses et des positions des corps et dépendant seulement de leur état interne.

L’expression de l’énergie ne pourrait se décomposer que d’une seule manière en trois termes de cette forme.

Mais il n’en est pas ainsi ; considérons des corps électrisés : l’énergie électrostatique due à leur action mutuelle dépendra évidemment de leur charge, c’est-à-dire de leur état ; mais elle dépendra également de leur position. Si ces corps sont en mouvement, ils agiront l’un sur l’autre électrodynamiquement et l’énergie électrodynamique dépendra non seulement de leur état et de leur position, mais de leurs vitesses.

Nous n’avons donc plus aucun moyen de faire le triage des termes qui doivent faire partie de T, de U et de Q et de séparer les trois parties de l’énergie.

Si (T + U + Q) est constant, il en est de même d’une fonction quelconque.

(T + U + Q).

Si T + U + Q était de la forme particulière que j’ai envisagée plus haut, il n’en résulterait pas d’ambiguïté ; parmi les fonctions (T + U + Q) qui demeurent constantes, il n’y en aurait qu’une qui serait de cette forme particulière, et ce serait celle-là que je conviendrais d’appeler énergie.

Mais je l’ai dit, il n’en est pas rigoureusement ainsi ; parmi les fonctions qui demeurent constantes, il n’y en a pas qui puissent rigoureusement se mettre sous cette forme particulière ; dès lors, comment choisir parmi elles celle qui doit s’appeler l’énergie ? Nous n’avons plus rien qui puisse nous guider dans notre choix.

Il ne nous reste plus qu’un énoncé pour le principe de la conservation de l’énergie ; il y a quelque chose qui demeure constant. Sous cette forme, il se trouve à son tour hors des atteintes de l’expérience et se réduit à une sorte de tautologie. Il est clair que si le monde est gouverné par des lois, il y aura des quantités qui demeureront constantes. Comme les principes de Newton, et pour une raison analogue, le principe de la conservation de l’énergie, fondé sur l’expérience, ne pourrait plus être infirmé par elle.

Cette discussion montre qu’en passant du système classique au système énergétique, on a réalisé un progrès ; mais elle montre, en même temps, que ce progrès est insuffisant.

Une autre objection me semble encore plus grave : le principe de moindre action est applicable aux phénomènes réversibles ; mais il n’est nullement satisfaisant en ce qui concerne les phénomènes irréversibles ; la tentative de Helmholtz pour l’étendre à ce genre de phénomènes n’a pas réussi et ne pouvait réussir : sous ce rapport tout reste à faire.

L’énoncé même du principe de moindre action a quelque chose de choquant pour l’esprit. Pour se rendre d’un point à un autre, une molécule matérielle, soustraite à l’action de toute force, mais assujettie à se mouvoir sur une surface, prendra la ligne géodésique, c’est-à-dire le chemin le plus court.

Cette molécule semble connaître le point où on veut la mener, prévoir le temps qu’elle mettra à l’atteindre en suivant tel et tel chemin, et choisir ensuite le chemin le plus convenable. L’énoncé nous la présente pour ainsi dire comme un être animé et libre. Il est clair qu’il vaudrait mieux le remplacer par un énoncé moins choquant, et où, comme diraient les philosophes, les causes finales ne sembleraient pas se substituer aux causes efficientes.


Thermodynamique[1]. — Le rôle des deux principes fondamentaux de la thermodynamique dans toutes les branches de la philosophie naturelle devient de jour en jour plus important. Abandonnant les théories ambitieuses d’il y a quarante ans, encombrées d’hypothèses moléculaires, nous cherchons aujourd’hui à élever sur la Thermodynamique seule l’édifice tout entier de la physique mathématique. Les deux principes de Meyer et de Clausius lui assureront-ils des fondations assez solides pour qu’il dure quelque temps ? Personne n’en doute ; mais d’où nous vient cette confiance ?

Un physicien éminent me disait un jour à propos de la loi des erreurs : Tout le monde y croit fermement parce que les mathématiciens s’imaginent que c’est un fait d’observation, et les observateurs que c’est un théorème de mathématiques. Il en a été longtemps ainsi pour le principe de la conservation de l’énergie. Il n’en est plus de même aujourd’hui ; personne n’ignore que c’est un fait expérimental.

Mais alors qui nous donne le droit d’attribuer au principe lui-même plus de généralité et plus de précision qu’aux expériences qui ont servi à le démontrer ? C’est là demander s’il est légitime, comme on le fait tous les jours, de généraliser les données empiriques, et je n’aurai pas l’outrecuidance de discuter cette question, après que tant de philosophes se sont vainement efforcés de la trancher. Une seule chose est certaine : si cette faculté nous était refusée, la science ne pourrait exister ou, du moins, réduite à une sorte d’inventaire, à la constatation des faits isolés, elle n’aurait pour nous aucun prix, puisqu’elle ne pourrait donner satisfaction à notre besoin d’ordre et d’harmonie et qu’elle serait en même temps incapable de prévoir. Comme les circonstances qui ont précédé un fait quelconque ne se reproduiront vraisemblablement jamais toutes à la fois, il faut déjà une première généralisation pour prévoir si ce fait se renouvellera encore dès que la moindre de ces circonstances sera changée.

Mais toute proposition peut être généralisée d’une infinité de manières. Parmi toutes les généralisations possibles, il faut bien que nous choisissions et nous ne pouvons choisir que la plus simple. Nous sommes donc conduits à agir comme si une loi simple était, toutes choses égales d’ailleurs, plus probable qu’une loi compliquée.

Il y a un demi-siècle on le confessait franchement et on proclamait que la nature aime la simplicité ; elle nous a donné depuis trop de démentis. Aujourd’hui on n’avoue plus cette tendance et on n’en conserve que ce qui est indispensable pour que la science ne devienne pas impossible.

En formulant une loi générale, simple et précise après des expériences relativement peu nombreuses et qui présentent certaines divergences, nous n’avons donc fait qu’obéir à une nécessité à laquelle l’esprit humain ne peut se soustraire.

Mais il y a quelque chose de plus et c’est pourquoi j’insiste.

Personne ne doute que le principe de Meyer ne soit appelé à survivre à toutes les lois particulières d’où on l’a tiré de même que la loi de Newton a survécu aux lois de Képler, d’où elle était sortie, et qui ne sont plus qu’approximatives, si l’on tient compte des perturbations.

Pourquoi ce principe occupe-t-il ainsi une sorte de place privilégiée parmi toutes les lois physiques ? Il y a à cela beaucoup de petites raisons.

Tout d’abord on croit que nous ne pourrions le rejeter ou même douter de sa rigueur absolue sans admettre la possibilité du mouvement perpétuel ; nous nous défions bien entendu d’une telle perspective et nous nous croyons moins téméraires en affirmant qu’en niant.

Cela n’est peut-être pas tout à fait exact ; l’impossibilité du mouvement perpétuel n’entraîne la conservation de l’énergie que pour les phénomènes réversibles.

L’imposante simplicité du principe de Meyer contribue également à affermir notre foi. Dans une loi déduite immédiatement de l’expérience, comme celle de Mariotte, cette simplicité nous paraîtrait plutôt une raison de méfiance : mais ici il n’en est plus de même ; nous voyons des éléments disparates au premier coup d’œil, se ranger dans un ordre inattendu et former un tout harmonieux ; et nous nous refusons à croire qu’une harmonie imprévue soit un simple effet du hasard. Il semble que notre conquête nous soit d’autant plus chère qu’elle nous a coûté plus d’efforts ou que nous soyons d’autant plus sûrs d’avoir arraché à la nature son vrai secret qu’elle a paru plus jalouse de nous le dérober.

Mais ce ne sont là que de petites raisons ; pour ériger la loi de Meyer en principe absolu, il faudrait une discussion plus approfondie. Mais si on essaye de la faire, on voit que ce principe absolu n’est même pas facile à énoncer.

Dans chaque cas particulier on voit bien ce que c’est que l’énergie et on en peut donner une définition au moins provisoire ; mais il est impossible d’en trouver une définition générale.

Si l’on veut énoncer le principe dans toute sa généralité et en l’appliquant à l’univers, on le voit pour ainsi dire s’évanouir et il ne reste plus que ceci : Il y a quelque chose qui demeure constant.

Mais cela même a-t-il un sens ? Dans l’hypothèse déterministe, l’état de l’univers est déterminé par un nombre excessivement grand n de paramètres que j’appellerai x1, x2, …, xn. Dès que l’on connaît à un instant quelconque les valeurs de ces n paramètres, on connaît également leurs dérivées par rapport au temps et on peut calculer par conséquent les valeurs de ces mêmes paramètres à un instant antérieur ou ultérieur. En d’autres termes, ces n paramètres satisfont à n équations différentielles du premier ordre.

Ces équations admettent n — 1 intégrales et il y a par conséquent n — 1 fonctions de x1, x2, …, xn, qui demeurent constantes. Si nous disons alors qu’il y a quelque chose qui demeure constant, nous ne faisons qu’énoncer une tautologie. On serait même embarrassé de dire quelle est parmi toutes nos intégrales celle qui doit conserver le nom d’énergie.

Ce n’est pas d’ailleurs en ce sens que l’on entend le principe de Meyer quand on l’applique à un système limité.

On admet alors que p de nos n paramètres varie d’une manière indépendante, de sorte que nous avons seulement n — p relations, généralement linéaires, entre nos n paramètres et leurs dérivées.

Supposons pour simplifier l’énoncé que la somme des travaux des forces extérieures soit nulle ainsi que celle des quantités de chaleur cédées au dehors. Voici alors quelle sera la signification de notre principe :

Il y a une combinaison de ces n — p relations dont le premier membre est une différentielle exacte ; et alors cette différentielle étant nulle en vertu de nos n — p relations, son intégrale est une constante et c’est cette intégrale qu’on appelle l’énergie.

Mais comment peut-il se faire qu’il y ait plusieurs paramètres dont les variations soient indépendantes ? Cela ne peut avoir lieu que sous l’influence des forces extérieures (bien que nous ayons supposé, pour simplifier, que la somme algébrique des travaux de ces forces soit nulle). Si en effet le système était complètement soustrait à toute action extérieure, les valeurs de nos n paramètres à un instant donné suffiraient pour déterminer l’état du système à un instant ultérieur quelconque, pourvu toutefois que nous restions dans l’hypothèse déterministe ; nous retomberions donc sur la même difficulté que plus haut.

Si l’état futur du système n’est pas entièrement déterminé par son état actuel, c’est qu’il dépend en outre de l’état des corps extérieurs au système. Mais alors est-il vraisemblable qu’il existe entre les paramètres x qui définissent l’état du système des équations indépendantes de cet état des corps extérieurs ; et si dans certains cas nous croyons pouvoir en trouver, n’est-ce pas uniquement par suite de notre ignorance et parce que l’influence de ces corps est trop faible pour que notre expérience puisse la déceler ?

Si le système n’est pas regardé comme complètement isolé, il est probable que l’expression rigoureusement exacte de son énergie interne devra dépendre de l’état des corps extérieurs. Encore ai-je supposé plus haut que la somme des travaux extérieurs était nulle, et si l’on veut s’affranchir de cette restriction un peu artificielle l’énoncé devient encore plus difficile.

Pour formuler le principe de Meyer en lui donnant un sens absolu, il faut donc l’étendre à tout l’univers et alors on se retrouve en face de cette même difficulté que l’on cherchait à éviter.

En résumé, et pour employer le langage ordinaire, la loi de la conservation de l’énergie ne peut avoir qu’une signification, c’est qu’il y a une propriété commune à tous les possibles ; mais dans l’hypothèse déterministe il n’y a qu’un seul possible et alors la loi n’a plus de sens.

Dans l’hypothèse indéterministe, au contraire, elle en prendrait un, même si on voulait l’entendre dans un sens absolu ; elle apparaîtrait comme une limite imposée à la liberté.

Mais ce mot m’avertit que je m’égare et que je vais sortir du domaine des mathématiques et de la physique. Je m’arrête donc et je ne veux retenir de toute cette discussion qu’une impression, c’est que la loi de Meyer est une forme assez souple pour qu’on y puisse faire rentrer presque tout ce que l’on veut. Je ne veux pas dire par là qu’elle ne correspond à aucune réalité objective ni qu’elle se réduise à une simple tautologie, puisque, dans chaque cas particulier, et pourvu qu’on ne veuille pas pousser jusqu’à l’absolu, elle a un sens parfaitement clair.

Cette souplesse est une raison de croire à sa longue durée, et comme, d’autre part, elle ne disparaîtra que pour se fondre dans une harmonie supérieure, nous pouvons travailler avec confiance en nous appuyant sur elle, certains d’avance que notre travail ne sera pas perdu.

Presque tout ce que je viens de dire s’applique au principe de Clausius. Ce qui le distingue, c’est qu’il s’exprime par une inégalité. On dira peut-être qu’il en est de même de toutes les lois physiques, puisque leur précision est toujours limitée par des erreurs d’observation. Mais elles affichent du moins la prétention d’être de premières approximations et on a l’espoir de les remplacer peu à peu par des lois de plus en plus précises. Si, au contraire, le principe de Clausius se réduit à une inégalité, ce n’est pas l’imperfection de nos moyens d’observation qui en est la cause, mais la nature même de la question.


CONCLUSIONS GÉNÉRALES

DE LA TROISIÈME PARTIE

Les principes de la mécanique se présentent donc à nous sous deux aspects différents. D’une part, ce sont des vérités fondées sur l’expérience et vérifiées d’une façon très approchée en ce qui concerne des systèmes presque isolés. D’autre part, ce sont des postulats applicables à l’ensemble de l’univers et regardés comme rigoureusement vrais.

Si ces postulats possèdent une généralité et une certitude qui faisaient défaut aux vérités expérimentales d’où ils sont tirés, c’est qu’ils se réduisent en dernière analyse à une simple convention que nous avons le droit de faire, parce que nous sommes certains d’avance qu’aucune expérience ne viendra la contredire.

Cette convention n’est pourtant pas absolument arbitraire ; elle ne sort pas de notre caprice ; nous l’adoptons parce que certaines expériences nous ont montré qu’elle serait commode.

On s’explique ainsi comment l’expérience a pu édifier les principes de la mécanique, et pourquoi cependant elle ne pourra les renverser.

Comparons avec la géométrie. Les propositions fondamentales de la géométrie, comme par exemple le postulatum d’Euclide, ne sont non plus que des conventions, et il est tout aussi déraisonnable de chercher si elles sont vraies ou fausses que de demander si le système métrique est vrai ou faux.

Seulement ces conventions sont commodes, et cela, ce sont certaines expériences qui nous l’apprennent.

Au premier abord, l’analogie est complète ; le rôle de l’expérience semble le même. On sera donc tenté de dire : Ou bien la mécanique doit être regardée comme une science expérimentale, et alors il doit en être de même de la géométrie ; ou bien au contraire la géométrie est une science déductive, et alors on peut en dire autant de la mécanique.

Une pareille conclusion serait illégitime. Les expériences qui nous ont conduits à adopter comme plus commodes les conventions fondamentales de la géométrie portent sur des objets qui n’ont rien de commun avec ceux qu’étudie la géométrie ; elles portent sur les propriétés des corps solides, sur la propagation rectiligne de la lumière. Ce sont des expériences de mécanique, des expériences d’optique ; on ne peut à aucun titre les regarder comme des expériences de géométrie. Et même la principale raison pour laquelle notre géométrie nous semble commode, c’est que les différentes parties de notre corps, notre œil, nos membres, jouissent précisément des propriétés des corps solides. À ce compte, nos expériences fondamentales sont avant tout des expériences de physiologie, qui portent, non sur l’espace qui est l’objet que doit étudier le géomètre, mais sur son corps, c’est-à-dire sur l’instrument dont il doit se servir pour cette étude.

Au contraire, les conventions fondamentales de la mécanique et les expériences qui nous démontrent qu’elles sont commodes portent bien sur les mêmes objets ou sur des objets analogues. Les principes conventionnels et généraux sont la généralisation naturelle et directe des principes expérimentaux et particuliers.

Qu’on ne dise pas que je trace ainsi des frontières artificielles entre les sciences ; que si je sépare par une barrière la géométrie proprement dite de l’étude des corps solides, je pourrais tout aussi bien en élever une entre la mécanique expérimentale et la mécanique conventionnelle des principes généraux. Qui ne voit en effet qu’en séparant ces deux sciences je les mutile l’une et l’autre, et que ce qui restera de la mécanique conventionnelle quand elle sera isolée ne sera que bien peu de chose, et ne pourra nullement être comparé à ce superbe corps de doctrine que l’on appelle géométrie ?

On comprend maintenant pourquoi l’enseignement de la mécanique doit rester expérimental.

C’est ainsi seulement qu’il pourra nous faire comprendre la genèse de la science, et cela est indispensable pour l’intelligence complète de la science elle-même.

D’ailleurs, si on étudie la mécanique, c’est pour l’appliquer ; et on ne peut l’appliquer que si elle reste objective. Or, ainsi que nous l’avons vu, ce que les principes gagnent en généralité et en certitude, ils le perdent en objectivité. C’est donc surtout avec le côté objectif des principes qu’il convient de se familiariser de bonne heure, et on ne peut le faire qu’en allant du particulier au général, au lieu de suivre la marche inverse.

Les principes sont des conventions et des définitions déguisées. Ils sont cependant tirés de lois expérimentales, ces lois ont été pour ainsi dire érigées en principes auxquels notre esprit attribue une valeur absolue.

Quelques philosophes ont trop généralisé ; ils ont cru que les principes étaient toute la science et par conséquent que toute la science était conventionnelle.

Cette doctrine paradoxale, qu’on a appelée le nominalisme, ne soutient pas l’examen.

Comment une loi peut-elle devenir un principe ? Elle exprimait un rapport entre deux termes réels A et B. Mais elle n’était pas rigoureusement vraie, elle n’était qu’approchée. Nous introduisons arbitrairement un terme intermédiaire C plus ou moins fictif et C est par définition ce qui a avec A exactement la relation exprimée par la loi.

Alors notre loi s’est décomposée en un principe absolu et rigoureux qui exprime le rapport de A à C et une loi expérimentale approchée et revisable qui exprime le rapport de C à B. Il est clair que si loin que l’on pousse cette décomposition, il restera toujours des lois.

Nous allons entrer maintenant dans le domaine des lois proprement dites.

  1. Les lignes qui vont suivre sont la reproduction partielle de la préface de mon ouvrage Thermodynamique.