que les orbites planétaires : il n’y a de differences entre elles, que celle qu’y met notre ignorance.
La probabilité est relative en partie à cette ignorance, en partie à nos connaissances. Nous savons que sur trois ou un plus grand nombre d’évènemens, un seul doit arriver ; mais rien ne porte à croire que l’un d’eux arrivera plutôt que les autres. Dans cet état d’indécision, il nous est impossible de prononcer avec certitude sur leur arrivée. Il est cependant probable qu’un de ces évènemens pris à volonté, n’arrivera pas, parce que nous voyons plusieurs cas également possibles qui excluent son existence, tandis qu’un seul la favorise.
La théorie des hasards consiste à réduire tous les évènemens du même genre, à un certain nombre de cas également possibles, c’est-à-dire tels que nous soyons également indécis sur leur existence, et à déterminer le nombre de cas favorables à l’évènement dont on cherche la probabilité. Le rapport de ce nombre à celui de tous les cas possibles, est la mesure de cette probabilité qui n’est ainsi qu’une fraction dont le numérateur est le nombre des cas favorables, et dont le dénominateur est le nombre de tous les cas possibles.