Recherches générales sur les surfaces courbes/Chapitre XVIII

La bibliothèque libre.
Sauter à la navigation Sauter à la recherche
◄  XVII
XIX  ►


XVIII.


Nous chercherons maintenant quelle est la condition pour que cette ligne soit la plus courte. Puisque la longueur de est exprimée par l’intégrale


la condition du minimum exige que la variation de cette intégrale, venant d’un changement infiniment petit dans la situation de cette ligne, devienne zéro. Le calcul, pour cette recherche, se fait plus commodément dans ce cas, si nous considérons comme fonction de Cela fait, si la variation est désignée par la caractéristique , nous avons

     


et l’on sait que l’expression sous le signe intégral doit s’évanouir indépendamment de On a ainsi


De là nous tirons, pour la ligue la plus courte, l’équation de condition suivante :


qu’on peut aussi écrire ainsi :


Du reste, à l’aide de l’équation


on peut éliminer, de la précédente équation, l’angle et développer ainsi l’équation différentielle du second ordre entre et qui se trouverait cependant plus compliquée et moins utile pour les applications que la précédente.