Technologies PNIPAM pour les laboratoires sur puce/Références

La bibliothèque libre.


= Références =

  • [1] M.R. Wilkins, J.C. Sanchez, A.A. Gooley, R.D. Appel, I. Humphery-Smith, D.F. Hochstrasser et K.L. Williams : Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev., 13:19–50, 1996.
  • [2] H. Andersson et A. van den Berg : Microfluidic devices for cellomics: A review. Sens. Actuators B Chem., 92(3):315–325, Jul. 2003, doi:10.1016/S0925-4005(03)00266-1.
  • [3] J. El-Ali, P.K. Sorger et K.F. Jensen : Cells on chips. Nature, 442(7101):403–411, Jul. 2006, doi:10.1038/nature05063. [Revue].
  • [4] I. Meyvantsson, J.W. Warrick, S. Hayes, A. Skoien et D.J. Beebe : Automated cell culture in high density tubeless microfluidic device arrays. Lab. Chip., 8(5):717–724, May 2008, doi:10.1039/b715375a.
  • [5] P.G. Righetti : Bioanalysis: Its past, present and some future. Electrophoresis, 25(14):2111–2127, 2004, doi:10.1002/elps.200305808.
  • [6] P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam et B.H. Weigl : Microfluidic diagnostic technologies for global public health. Nature, 442(7101):412–418, Jul. 2006, doi:10.1038/nature05064.
  • [7] S. Fields : The interplay of biology and technology. Proc Natl Acad Sci U S A, 98(18):10051–10054, Aug 2001, doi:10.1073/pnas.191380098.
  • [8] G.M. Whitesides : The ‘right’ size in nanobiotechnology. Nat. Biotechnol., 21(10):1161–1165, Oct. 2003, doi:10.1038/nbt872.
  • [9] V. Gewin : Nanobiotechnology: small talk. Nature, 444(7118):514–515, Nov. 2006, doi:10.1038/nj7118-514a.
  • [10] A. Manz, N. Graber et H.M. Widmer : Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B, 1(1-6):244–248, Jan. 1990, doi:10.1016/0925-4005(90)80209-I.
  • [11] A. Manz, D.J. Harrison, E.M.J. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi et H.M. Widmer : Planar chips technology for miniaturization and integration of separation techniques into monitoring systems – capillary electrophoresis on a chip. J. Chromatogr. A, 593(1-2):253–258, Feb. 1992, doi:10.1016/0021-9673(92)80293-4.
  • [12] D.R. Reyes, D. Iossifidis, P.-A. Auroux et A. Manz : Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem., 74(12):2623–2636, 2002, doi:10.1021/ac0202435.
  • [13] D. Janasek, J. Franzke et A. Manz : Scaling and the design of miniaturized chemical-analysis systems. Nature, 442(7101):374–380, Jul. 2006, doi:10.1038/nature05059.
  • [14] L.A. Legendre, J.M. Bienvenue, M.G. Roper, J.P. Ferrance et J.P. Landers : A simple, valveless microfluidic sample preparation device for extraction and amplification of dna from nanoliter-volume samples. Anal. Chem., 78(5):1444–1451, Mar. 2006, doi:10.1021/ac0516988.
  • [15] N. Lion, F. Reymond, H.H. Girault et J.S. Rossier : Why the move to microfluidics for protein analysis? Curr. Opin. Biotechnol., 15(1):31–37, Feb. 2004, doi:10.1016/j.copbio.2004.01.001.
  • [16] M. U. Kopp, H. J. Crabtree et A. Manz : Developments in technology and applications of microsystems. Curr Opin Chem Biol, 1(3):410–419, Oct 1997, doi:10.1016/S1367-5931(97)80081-6.
  • [17] P. Horvatovich, N.I. Govorukhina, T.H. Reijmers, A.G.J. van der Zee, F. Suits et R. Bischoff : Chip-LC-MS for label-free profiling of human serum. Electrophoresis, 28(23):4493–4505, Dec. 2007, doi:10.1002/elps.200600719.
  • [18] D.A. Dunn et I. Feygin : Challenges and solutions to ultra-high-throughput screening assay miniaturization: submicroliter fluid handling. Drug Discovery Today, 5(12, suppl. 1):84–91, Dec. 2000, doi:10.1016/S1359-6446(00)00064-7. [Revue].
  • [19] M.J. Madou et R. Cubicciotti : Scaling issues in chemical and biological sensors. Proc. IEEE, 91(6):830–838, 2003, doi:10.1109/JPROC.2003.813577.
  • [20] S. Nilsson et T. Laurell : Miniaturization in analytical and bioanalytical chemistry. Anal. Bioanal. Chem., 378(7):1676–1677, Apr 2004, doi:10.1007/s00216-004-2543-z.
  • [21] Comité de Pilotage du Réseau Microfluidique : Argumentaire en faveur du lancement d’une action incitatrice ambitieuse et structurée en nano-microfluidique et microsystèmes fluidiques. Livre blanc, Jan. 2005. URI : http://www.laas.fr/Microfluidique/LIVRE%20BLANC_Microfluidique_VF.pdf.
  • [22] A. Ríos, A. Escarpaa, M.C. Gonzáleza et A.G. Crevillén : Challenges of analytical microsystems. Tr. Anal. Chem., 25(5):467–479, May 2006, doi:10.1016/j.trac.2005.11.012.
  • [23] A.W. Moore : The Infinite, chapitre 2: Aristotle, page 296. Routledge, 2001. p. 34.
  • [24] B.C. K. Choi et A.W.P. Pak : Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clin. Invest. Med., 29(6):351–364, Dec. 2006. URI : http://csci-scrc.medical.org/english/cim.html.
  • [25] S.W. Aboelela, E. Larson, S. Bakken, O. Carrasquillo, A. Formicola, S.A. Glied, J. Haas et K.M. Gebbie : Defining interdisciplinary research: conclusions from a critical review of the literature. Health Serv. Res., 42(1 Pt 1):329–346, Feb. 2007, doi:10.1111/j.1475-6773.2006.00621.x.
  • [26] R.W. Barber et D.R. Emerson : Optimal design of microfluidic networks using biologically inspired principles. Microfluid. Nanofluid., 4(3):179–191, Mar 2008, doi:10.1007/s10404-007-0163-6.
  • [27] M. Gross : Travels to the Nanoworld: Miniature Machinery in Nature and Technology. Perseus Publishing, 1999.
  • [28] Editorial : Spring-cleaning in France. Nature, 453(7192):133, May 2008, doi:10.1038/453133a.
  • [29] G.M. Whitesides : The origins and the future of microfluidics. Nature, 442(7101):368–373, Jul. 2006, doi:10.1038/nature05058.
  • [30] P. Tabeling : Introduction à la microfluidique. Échelles. Belin, 2003.
  • [31] A.R. Wheeler, H. Moon, C.A. Bird, R.R. Ogorzalek Loo, C.-.C. J. Kim, J.A. Loo et R.L. Garrell : Digital microfluidics with in-line sample purification for proteomics analyses with maldi-ms. Anal. Chem., 77(2):534–540, Jan. 2005, doi:10.1021/ac048754+.
  • [32] Y. Fouillet, D. Jary, C. Chabrol, P. Claustre et C. Peponnet : Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems. Microfluid. Nanofluid., 4(3):159–165, Mar. 2008, doi:10.1007/s10404-007-0164-5.
  • [33] S. Colin : Microfluidique. Traité EGEM. Lavoisier, 2004.
  • [34] T.M. Squires et S.R. Quake : Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys., 77(3):977–1026, 2005, doi:10.1103/RevModPhys.77.977.
  • [35] O. Reynolds : An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond., 174:935–982, 1883. URI : http://www.jstor.org/stable/109431.
  • [36] A. van den Berg et P. Bergveld : Labs-on-a-chip: origin, highlights and future perspectives. on the occasion of the 10th conference. Lab. Chip., 6(10):1266–1273, Oct. 2006, doi:10.1039/b612120a.
  • [37] R. Mariella : Sample preparation: the weak link in microfluidics-based biodetection. Biomed. Microdevices, May 2008, doi:10.1007/s10544-008-9190-7.
  • [38] Editors : Ten emerging technologies that will change the world. M.I.T.’s Technology Review, Jan 2001. URI : http://www.technologyreview.com/Infotech/12265/.
  • [39] G.M. Whitesides et A.D. Stroock : Flexible methods for microfluidics. Physics Today, 54(6):42–48, Jun. 2001, doi:10.1063/1.1387591.
  • [40] H. Becker et C. Gärtner : Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem., 390(1):89–111, Jan. 2008, doi:10.1007/s00216-007-1692-2.
  • [41] P. Abgrall, V. Conedera, H. Camon, A.-M. Gué et N.-T. Nguyen : SU-8 as a structural material for labs-on-chips and microelectromechanical systems. Electrophoresis, 28(24):4539–4551, Dec. 2007, doi:10.1002/elps.200700333.
  • [42] A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl et P. Yager : A rapid diffusion immunoassay in a T-sensor. Nature Biotechnology, 19(5):461–465, May 2001, doi:10.1038/88135.
  • [43] G.A. Ardila Rodriguez : Conception, simulation et réalisation d’un micro-actionneur à base de matériau énergétique pour l’actionnement microfluidique. Thèse de doctorat, Université Toulouse III - Paul Sabatier, Jan. 2008.
  • [44] D.J. Laser et J.G. Santiago : A review of micropumps. J. Micromech. Microeng., 14(6):R35–R64, Jun 2004, doi:10.1088/0960-1317/14/6/R01.
  • [45] P. Woias : Micropumps – past, progress and future prospects. Sens. Actuators B Chem., 105(1):28–38, Feb. 2005, doi:10.1016/j.snb.2004.02.033.
  • [46] L. Chen, S. Lee, J. Choo et E.K. Lee : Continuous dynamic flow micropumps for microfluid manipulation. J. Micromech. Microeng., 18(1):013001–0130022, Jan. 2008, doi:10.1088/0960-1317/18/1/013001.
  • [47] T. Thorsen, S.J. Maerkl et S.R. Quake : Microfluidic large-scale integration. Science, 298(5593):580–584, Oct. 2002, doi:10.1126/science.1076996.
  • [48] J. Melin et S.R. Quake : Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct., 36:213–231, 2007, doi:10.1146/annurev.biophys.36.040306.132646.
  • [49] C. Zhang, D. Xing et Y. Li : Micropumps, microvalves, and micromixers within pcr microfluidic chips: Advances and trends. Biotechnol. Adv., 25(5):483–514, Sep.-Oct. 2007, doi:10.1016/j.biotechadv.2007.05.003. [Revue].
  • [50] C.K. Fredrickson et Z.H. Fan : Macro-to-micro interfaces for microfluidic devices. Lab. Chip., 4(6):526–533, Dec. 2004, doi:10.1039/b410720a.
  • [51] C. Gaertner, H. Becker, B. Anton, A.P. O’Neill et O. Roetting : Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts. In Proceedings of SPIE - Microfluidics, BioMEMS, and Medical Microsystems, volume 4982, pages 99–104, 2003.
  • [52] D. Niarchos : Magnetic MEMS: key issues and some applications. Sens. Actuators A Phys., 109(1-2):166–173, Dec 2003, doi:10.1016/j.sna.2003.09.010.
  • [53] N.Pamme : Magnetism and microfluidics. Lab Chip, 6(1):24–38, Jan 2006, doi:10.1039/b513005k.
  • [54] S. Bronzeau et N. Pamme : Simultaneous bioassays in a microfluidic channel on plugs of different magnetic particles. Anal Chim Acta, 609(1):105–112, Feb 2008, doi:10.1016/j.aca.2007.11.035.
  • [55] J.D. Trumbull, I.K. Glasgow, D.J. Beebe et R.L. Magin : Integrating microfabricated fluidic systems and NMR spectroscopy. IEEE Trans. Biomed. Eng., 47(1):3–7, 2000, doi:10.1109/10.817611.
  • [56] K.B. Mogensen, H. Klank et J.P. Kutter : Recent developments in detection for microfluidic systems. Electrophoresis, 25(21-22):3498–3512, 2004, doi:10.1002/elps.200406108. [Revue].
  • [57] J.R. Krogmeier, I. Schaefer, G. Seward, G.R. Yantz et J.W. Larson : An integrated optics microfluidic device for detecting single dna molecules. Lab Chip, 7(12):1767–1774, Dec 2007, doi:10.1039/b710504e.
  • [58] B. Kuswandi, Nuriman, J. Huskens et W. Verboom : Optical sensing systems for microfluidic devices: a review. Anal Chim Acta, 601(2):141–155, Oct 2007, doi:10.1016/j.aca.2007.08.046. [Revue].
  • [59] M. Bowden, L. Song et D.R. Walt : Development of a microfluidic platform with an optical imaging microarray capable of attomolar target dna detection. Anal Chem, 77(17):5583–5588, Sep 2005, doi:10.1021/ac050503t.
  • [60] L. Rindorf, P.E. Høiby, J.B. Jensen, L.H. Pedersen, O. Bang et O. Geschke : Towards biochips using microstructured optical fiber sensors. Anal Bioanal Chem, 385(8):1370–1375, Aug 2006, doi:10.1007/s00216-006-0480-8.
  • [61] D. Psaltis, S.R. Quake et C. Yang : Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442(7101):381–386, Jul 2006, doi:10.1038/nature05060.
  • [62] Editors : 10 emerging technologies that will change your world. M.I.T.’s Technology Review, Feb 2004. URI : http://www.technologyreview.com/Infotech/13438/?a=f.
  • [63] S.C. Terry, J.H. Jerman et J.B. Angell : A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron. Devices, 26(12):1880–1886, Dec. 1979. URI : http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1480369.
  • [64] A.J. DeMello : Control and detection of chemical reactions in microfluidic systems. Nature, 442(7101):394–402, Jul. 2006, doi:10.1038/nature05062. [Revue].
  • [65] D.J. Harrison, A. Manz, Z. Fan, H. Lüdi et H.M. Widmer : Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem., 64(17):1926–1932, 1992, doi:10.1021/ac00041a030.
  • [66] D.J. Harrison, K. Fluri, K. Seiler, Z. Fan, C.S. Effenhauser et A. Manz : Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science, 261(5123):895–897, Aug. 1993, doi:10.1126/science.261.5123.895.
  • [67] P.S. Dittrich, K. Tachikawa et A. Manz : Micro total analysis systems. latest advancements and trends. Anal. Chem., 78(12):3887–3908, Jun. 2006, doi:10.1021/ac0605602.
  • [68] J. West, M. Becker, S. Tombrink et A. Manz : Micro total analysis systems: Latest achievements. Anal. Chem., 80(12):4403 – 4419, May 2008, doi:10.1021/ac800680j.
  • [69] P.-A. Auroux, D. Iossifidis, D.R. Reyes et A. Manz : Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem., 74(12):2637–2652, Jun. 2002, doi:10.1021/ac020239t. [Revue].
  • [70] Y. Sun et Y.C. Kwok : Polymeric microfluidic system for dna analysis. Anal. Chim. Acta, 556(1):80–96, Jan. 2006, doi:10.1016/j.aca.2005.09.035.
  • [71] J.O. Tegenfeldt, C. Prinz, H. Cao, R.L. Huang, R.H. Austin, S.Y. Chou, E.C. Cox et J.C. Sturm : Micro- and nanofluidics for dna analysis. Anal. Bioanal. Chem., 378(7):1678–1692, Apr. 2004, doi:10.1007/s00216-004-2526-0.
  • [72] D. Figeys et D. Pinto : Proteomics on a chip: Promising developments. Electrophoresis, 22(2):208–216, Jan. 2001, doi:<208::AID-ELPS208>3.0.CO;2-O 10.1002/1522-2683(200101)22:2<208::AID-ELPS208>3.0.CO;2-O.
  • [73] N. Lion, T.C. Rohner, L. Dayon, I.L. Arnaud, E. Damoc, N. Youhnovski, Z.-Y. Wu, Ch. Roussel, J. Josserand, H. Jensen, J.S. Rossier, M. Przybylski et H.H. Girault : Microfluidic systems in proteomics. Electrophoresis, 24(21):3533–3562, 2003, doi:10.1002/elps.200305629. [Revue].
  • [74] Y. Tanaka, K. Sato, T. Shimizu, M. Yamato, T. Okano et T. Kitamori : Biological cells on microchips: new technologies and applications. Biosens. Bioelectron., 23(4):449–458, Nov. 2007, doi:10.1016/j.bios.2007.08.006.
  • [75] C.T. Lim et Y. Zhang : Bead-based microfluidic immunoassays: the next generation. Biosens. Bioelectron., 22(7):1197–1204, Feb. 2007, doi:10.1016/j.bios.2006.06.005.
  • [76] S. Suzuki et S. Honda : Miniaturization in carbohydrate analysis. Electrophoresis, 24(21):3577–3582, Nov. 2003, doi:10.1002/elps.200305662. [Revue].
  • [77] A.D. Zamfir, L. Bindila, N. Lion, M. Allen, H.H. Girault et J. Peter-Katalinić : Chip electrospray mass spectrometry for carbohydrate analysis. Electrophoresis, 26(19):3650–3673, Oct. 2005, doi:10.1002/elps.200500101. [Revue].
  • [78] B. Charlton, B. Crossley et S. Hietala : Conventional and future diagnostics for avian influenza. Comp. Immunol. Microbiol. Infect. Dis., Apr. 2008, doi:10.1016/j.cimid.2008.01.009.
  • [79] B.L. Ziober, M.G. Mauk, E.M. Falls, Z. Chen, A.F. Ziober et H.H. Bau : Lab-on-a-chip for oral cancer screening and diagnosis. Head Neck, 30(1):111–121, Jan. 2008, doi:10.1002/hed.20680. [Revue].
  • [80] B.H. Weigl, R.L. Bardell et C.R. Cabrera : Lab-on-a-chip for drug development. Adv. Drug Deliv. Rev., 55(3):349–377, 2003, doi:10.1016/S0169-409X(02)00223-5. [Revue].
  • [81] J.G.E. Gardeniers et A. van den Berg : Lab-on-a-chip systems for biomedical and environmental monitoring. Anal. Bioanal. Chem., 378(7):1700–1703, Apr. 2004, doi:10.1007/s00216-003-2435-7.
  • [82] H.Y. Tan, W.K. Loke, Y.T. Tan et N.-T. Nguyen : A lab-on-a-chip for detection of nerve agent sarin in blood. Lab. Chip., 8(6):885–891, Jun. 2008, doi:10.1039/b800438b.
  • [83] S.J. Haswell : Chemical technology: all together now. Nature, 441(7094):705, Jun. 2006, doi:10.1038/441705a.
  • [84] J. Astorga-Wells, H. Jörnvall et T. Bergman : A microfluidic electrocapture device in sample preparation for protein analysis by maldi mass spectrometry. Anal. Chem., 75(19):5213–5219, Oct. 2003, doi:10.1021/ac0300901.
  • [85] J. Astorga-Wells, S. Vollmer, S. Tryggvason, T. Bergman et H. Jörnvall : Microfluidic electrocapture for separation of peptides. Anal. Chem., 77(22):7131–7136, 2005, doi:10.1021/ac050931z.
  • [86] A. Dodge, E. Brunet, S. Chen, J. Goulpeau, V. Labas, J. Vinh et P. Tabeling : Pdms-based microfluidics for proteomic analysis. Analyst, 131(10):1122–1128, Oct. 2006, doi:10.1039/b606394b.
  • [87] S.L.S. Freire et A.R. Wheeler : Proteome-on-a-chip: mirage, or on the horizon? Lab. Chip., 6(11):1415–1423, Nov. 2006, doi:10.1039/b609871a. [Revue].
  • [88] J.D. Ramsey, S.C. Jacobson, C.T. Culbertson et J.M. Ramsey : High-efficiency, two-dimensional separations of protein digests on microfluidic devices. Anal. Chem., 75(15):3758–3764, June 2003, doi:10.1021/ac0264574.
  • [89] J. Li, T. LeRiche, T.-L. Tremblay, C. Wang, E. Bonneil, D.J. Harrison et P. Thibault : Application of microfluidic devices to proteomics research: Identification of trace-level protein digests and affinity capture of target peptides. Mol. Cell. Proteomics, 1(2):157–168, Jan. 2002, doi:10.1074/mcp.M100022-MCP200.
  • [90] S.C. Jacobson, C.T. Culbertson, J.E. Daler et J.M. Ramsey : Microchip structures for submillisecond electrophoresis. Anal. Chem., 70(16):3476–3480, July 1998, doi:10.1021/ac980349t.
  • [91] W.R. Vandaveer, S.A. Pasas-Farmer, D.J. Fischer, C.N. Frankenfeld et S.M. Lunte : Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis, 25(21-22):3528–3549, Nov 2004, doi:10.1002/elps.200406115.
  • [92] E. Thrush, Of. Levi, W. Ha, K. Wang, S.J. Smith et J.S. Harris : Integrated bio-fluorescence sensor. J. Chromatogr. A, 1013(1-2):103–110, Sep 2003, doi:10.1016/S0021-9673(03)01361-X.
  • [93] N. Minc et J.-L. Viovy : Microfluidique et applications biologiques : enjeux et tendances. C. R. Physique, 5(5):565–575, juin 2004, doi:10.1016/j.crhy.2004.04.003.
  • [94] R.H. Liu, J. Yang, R. Lenigk, J. Bonanno et P. Grodzinski : Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and dna microarray detection. Anal. Chem., 76(7):1824–1831, Apr. 2004, doi:10.1021/ac0353029.
  • [95] H. Moon, A.R. Wheeler, R.L. Garrell, J.A. Loo et C.-J.C. Kim : An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by maldi-ms. Lab. Chip., 6(9):1213–1219, Sep. 2006, doi:10.1039/b601954d.
  • [96] J.M. Ramsey : The burgeoning power of the shrinking laboratory. Nat. Biotechnol., 17(11):1061–1062, Nov. 1999, doi:10.1038/15044.
  • [97] J.V. Zoval et M.J. Madou : Centrifuge-based fluidic platforms. Proc. IEEE, 92(1):140–153, 2004, doi:10.1109/JPROC.2003.820541. [Revue].
  • [98] C. Eriksson, C. Agaton, R. Kånge, M. Sundberg, P. Nilsson, B. Ek, M. Uhlén, M. Gustafsson et S. Hober : Microfluidic analysis of antibody specificity in a compact disk format. J. Proteome Res., 5(7):1568–1574, Jul. 2006, doi:10.1021/pr050447c.
  • [99] M. Madou, J. Zoval, G. Jia, H. Kido, J. Kim et N. Kim : Lab on a CD. Annu. Rev. Biomed. Eng., 8:601–628, 2006, doi:10.1146/annurev.bioeng.8.061505.095758.
  • [100] J. Lichtenberg, N.F. de Rooij et E. Verpoorte : Sample pretreatment on microfabricated devices. Talanta, 56(11):233–266, Feb. 2002, doi:10.1016/S0039-9140(01)00593-8. [Revue].
  • [101] M.Toner et D. Irimia : Blood-on-a-chip. Annu. Rev. Biomed. Eng., 7:77–103, 2005, doi:10.1146/annurev.bioeng.7.011205.135108.
  • [102] J.L. Luque-Garcia et T.A. Neubert : Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. J. Chromatogr. A, 1153(1-2):259–276, Jun. 2007, doi:10.1016/j.chroma.2006.11.054. [Revue].
  • [103] R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K.-I. Tsubota, Y. Imai et T. Yamaguchi : In vitro blood flow in a rectangular pdms microchannel: experimental observations using a confocal micro-piv system. Biomed. Microdevices, 10(2):153–167, Apr. 2008, doi:10.1007/s10544-007-9121-z.
  • [104] A.G. Crevillén, M. Hervás, M.A. López, M.C. González et A. Escarpa : Real sample analysis on microfluidic devices. Talanta, 74(3):342–357, Dec. 2007, doi:10.1016/j.talanta.2007.10.019. [Revue].
  • [105] K. S. Drese, F. von Germar et M. Ritzi : Sample preparation in lab-on-a-chip systems. Med Device Technol, 18(1):42, 44, 46, 2007. URI : http://www.devicelink.com/mdt/archive/07/01/004.html.
  • [106] Y. Huang, E.L. Mather, J.L. Bell et M. Madou : Mems-based sample preparation for molecular diagnostics. Anal. Bioanal. Chem., 372(1):49–65, Jan. 2002, doi:10.1007/s00216-001-1191-9. [Revue].
  • [107] S. Le Gac, J. Carlier, J.-C. Camart, C. Cren-Olivé et C. Rolando : Monoliths for microfluidic devices in proteomics. J. Chromatogr. B, 808(1):3–14, Aug. 2004, doi:10.1016/j.jchromb.2004.03.067.
  • [108] N. Lion, V. Gobry, H. Jensen, J.S. Rossier et H. Girault : Integration of a membrane-based desalting step in a microfabricated disposable polymer injector for mass spectrometric protein analysis. Electrophoresis, 23(20):3583–3588, Oct. 2002, doi:<3583::AID-ELPS3583>3.0.CO;2-N 10.1002/1522-2683(200210)23:20<3583::AID-ELPS3583>3.0.CO;2-N.
  • [109] N. Lion, J.-O. Gellon, H. Jensen et H.H. Girault : On-chip protein sample desalting and preparation for direct coupling with electrospray ionization mass spectrometry. J. Chromatogr. A, 1003(1-2):11–19, Jun. 2003, doi:10.1016/S0021-9673(03)00771-4.
  • [110] M. Gustafsson, D. Hirschberg, C. Palmberg, H. Jörnvall et T. Bergman : Integrated sample preparation and maldi mass spectrometry on a microfluidic compact disk. Anal. Chem., 76(2):345–350, Jan. 2004, doi:10.1021/ac030194b.
  • [111] J.N. Adkins, S.M. Varnum, K.J. Auberry, R.J. Moore, N.H. Angell, R.D. Smith, D.L. Springer et J.G. Pounds : Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics, 1(12):947–955, Dec. 2002, doi:10.1074/mcp.M200066-MCP200.
  • [112] M. Heskins et J.E. Guillet : Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Part A Pure Appl. Chem., 2(8):1441–1455, Dec. 1968, doi:10.1080/10601326808051910.
  • [113] X.-Z. Zhang, F.-J. Wang et C.-C. Chu : Thermoresponsive hydrogel with rapid response dynamics. J. Mater. Sci. Mater. Med., 14(5):451–455, May 2003, doi:10.1023/A:1023219019500.
  • [114] H. Yim, M.S. Kent, S. Mendez, S.S. Balamurugan, S. Balamurugan, G.P. Lopez et S. Satija : Temperature-dependent conformational change of grafted chains at high surface density in water. Macromol., 37(5):1994–1997, 2004, doi:10.1021/ma0354290.
  • [115] H.G. Schild : Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci., 17(2):163–249, 1992, doi:10.1016/0079-6700(92)90023-R.
  • [116] R. Pelton : Temperature-sensitive aqueous microgels. Adv. Colloid. Interface Sci., 85(1):1–33, Feb. 2000, doi:10.1016/S0001-8686(99)00023-8. [Revue].
  • [117] Y.V. Pan, R.A. Wesley, R. Luginbuhl, D.D. Denton et B.D. Ratner : Plasma polymerized N-isopropylacrylamide: Synthesis and characterization of a smart thermally responsive coating. Biomacromol., 2(1):32–36, 2001, doi:10.1021/bm0000642.
  • [118] P.S. Curti, M.R. De Moura, E. Radovanovic, A.F. Rubira, E.C. Muniz et R.A. Moliterno : Surface modification of polystyrene and poly(ethylene terephtalate) by grafting poly(N-isopropylacrylamide). J. Mater. Sci. Mater. Med., 13(12):1175–1180, Dec 2002, doi:10.1023/A:1021154424189.
  • [119] P. Heinz, F. Bretagnol, I. Mannelli, L. Sirghi, A. Valsesia, G. Ceccone, D. Gilliland, K. Landfester, H. Rauscher et F. Rossi : Poly(N-isopropylacrylamide) grafted on plasma-activated poly(ethylene oxide): Thermal response and interaction with proteins. Langmuir, 24(12):6166––6175, May 2008, doi:10.1021/la800575f.
  • [120] G. Graziano : On the temperature-induced coil to globule transition of poly-N-isopropylacrylamide in dilute aqueous solutions. Int. J. Biol. Macromol., 27(1):89–97, Mar. 2000, doi:10.1016/S0141-8130(99)00122-1.
  • [121] A. Estève, A. Bail, G. Landa, A. Dkhissi, M. Brut, M. Djafari Rouhani, J. Sudor et A.-M. Gué : A new insight into the understanding of the collapsed form of poly(N-isopropylacrylamide) molecules. Chem. Phys., Volume 340(1-3):12–16, Nov. 2007, doi:10.1016/j.chemphys.2007.06.054.
  • [122] G. Zhang : Study on conformation change of thermally sensitive linear grafted poly(N-isopropylacrylamide) chains by quartz crystal microbalance. Macromol., 37(17):6553–6557, 2004, doi:10.1021/ma035937+.
  • [123] G. Liu et G. Zhang : Collapse and swelling of thermally sensitive poly(N-isopropylacrylamide) brushes monitored with a quartz crystal microbalance. J. Phys. Chem. B, 109(2):743–747, 2005, doi:10.1021/jp046903m.
  • [124] N. Ishida et S. Biggs : Direct observation of the phase transition for a poly(n-isopropylacryamide) layer grafted onto a solid surface by and QCM-D. Langmuir, 23(22):11083–11088, Oct. 2007, doi:10.1021/la701461b.
  • [125] M. Annaka, C. Yahiro, K. Nagase, A. Kikuchi et T. Okano : Real-time observation of coil-to-globule transition in thermosensitive poly(n-isopropylacrylamide) brushes by quartz crystal microbalance. Polymer, 48(19):5713–5720, Sept. 2007, doi:10.1016/j.polymer.2007.06.067.
  • [126] C. Ramkissoon-Ganorkar, A. Gutowska, F. Liu, M. Baudys et S. W. Kim : Polymer molecular weight alters properties of pH-/temperature-sensitive polymeric beads. Pharm Res, 16(6):819–827, Jun 1999, doi:10.1023/A:1018813700535.
  • [127] K.N. Plunkett, X. Zhu, J.S. Moore et D.E. Leckband : PNIPAM chain collapse depends on the molecular weight and grafting density. Langmuir, 22(9):4259–4266, Apr. 2006, doi:10.1021/la0531502.
  • [128] Y. Pei, J. Chen, L. Yang, L. Shi, Q. Tao, B. Hui et J. Li : The effect of pH on the LCST of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid). J. Biomater. Sci. Polym. Ed., 15(5):585–594, 2004, doi:10.1163/156856204323046852.
  • [129] G. Zhang et C. Wu : Reentrant coil-to-globule-to-coil transition of a single linear homopolymer chain in a water/methanol mixture. Phys Rev Lett, 86(5):822–825, Jan 2001, doi:10.1103/PhysRevLett.86.822.
  • [130] Howard G. Schild et David A. Tirrell : Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J. Phys. Chem., 94(10):4352–4356, 1990, doi:10.1021/j100373a088.
  • [131] F. Eeckman, K. Amighi et A. J. Moës : Effect of some physiological and non-physiological compounds on the phase transition temperature of thermoresponsive polymers intended for oral controlled-drug delivery. Int J Pharm, 222(2):259–270, Jul 2001, doi:10.1016/S0378-5173(01)00716-5.
  • [132] T. G. Park et A. S. Hoffman : Estimation of temperature-dependent pore size in poly(n-isopropylacrylamide) hydrogel beads. Biotechnol Prog, 10(1):82–86, 1994, doi:10.1021/bp00025a010.
  • [133] G. Rollason, J. E. Davies et M. V. Sefton : Preliminary report on cell culture on a thermally reversible copolymer. Biomaterials, 14(2):153–155, 1993, doi:10.1016/0142-9612(93)90230-Y.
  • [134] K. Auditore-Hargreaves, R.L. Houghton, N. Monji, J.H. Priest, A.S. Hoffman et R.C. Nowinski : Phase-separation immunoassays. Clin. Chem., 33(9):1509–1516, Sep. 1987. URI : http://www.clinchem.org/cgi/content/abstract/33/9/1509.
  • [135] I.C. Barker, J.M.G. Cowie, T.N. Huckerby, D.A. Shaw, I. Soutar et L. Swanson : Studies of the "smart" thermoresponsive behavior of copolymers of N-isopropylacrylamide and N,N-dimethylacrylamide in dilute aqueous solution. Macromol., 36(20):7765–7770, 2003, doi:10.1021/ma034250m.
  • [136] G. Bokias et Y. Mylonas : Association of positively charged copolymers based on N-isopropylacrylamide with hydrophobically modified poly(sodium acrylate) in water. Macromol., 34(4):885–889, 2001, doi:10.1021/ma001423o.
  • [137] J. Moselhy, X. Y. Wu, R. Nicholov et K. Kodaria : In vitro studies of the interaction of poly(nipam/maa) nanoparticles with proteins and cells. J Biomater Sci Polym Ed, 11(2):123–147, 2000, doi:10.1163/156856200743616.
  • [138] J.M. Weissman, H.B. Sunkara, A.S. Tse et S.A. Asher : Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science, 274(5289):959–960, Nov. 1996, doi:10.1126/science.274.5289.959.
  • [139] S. Mias, J. Sudor et H. Camon : PNIPAM: a thermo-activated nano-material for use in optical devices. Microsystem Technologies, 14(4-5):691–695, Apr. 2008, doi:10.1007/s00542-007-0454-6.
  • [140] L. Klouda et A.G. Mikos : Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm., 68(1):34–45, Jan. 2008, doi:10.1016/j.ejpb.2007.02.025.
  • [141] N. Monji et A. S. Hoffman : A novel immunoassay system and bioseparation process based on thermal phase separating polymers. Appl Biochem Biotechnol, 14(2):107–120, Mar 1987, doi:10.1007/BF02798429.
  • [142] N. Monji, C. A. Cole, M. Tam, L. Goldstein et R. C. Nowinski : Application of a thermally-reversible polymer-antibody conjugate in a novel membrane-based immunoassay. Biochem Biophys Res Commun, 172(2):652–660, Oct 1990, doi:10.1016/0006-291X(90)90724-2.
  • [143] N. Monji, C. A. Cole et A. S. Hoffman : Activated, n-substituted acrylamide polymers for antibody coupling: application to a novel membrane-based immunoassay. J Biomater Sci Polym Ed, 5(5):407–420, 1994, doi:10.1163/156856294X00112.
  • [144] I.Y. Galaev et B. Mattiasson : Thermoreactive water-soluble polymers, nonionic surfactants, and hydrogels as reagents in biotechnology. Enzyme Microb Technol, 15(5):354–366, May 1993, doi:10.1016/0141-0229(93)90122-I.
  • [145] Y. G. Takei, M. Matsukata, T. Aoki, K. Sanui, N. Ogata, A. Kikuchi, Y. Sakurai et T. Okano : Temperature-responsive bioconjugates. 3. antibody-poly (n-isopropylacrylamide) conjugates for temperature-modulated precipitations and affinity bioseparations. Bioconjug. Chem., 5(6):577–582, 1994, doi:10.1021/bc00030a013.
  • [146] A. Kumar, P.-O. Wahlund, C. Kepka, I.Y. Galaev et B. Mattiasson : Purification of histidine-tagged single-chain Fv-antibody fragments by metal chelate affinity precipitation using thermoresponsive copolymers. Biotechnol. Bioeng., 84(4):494–503, Nov. 2003, doi:10.1002/bit.10810.
  • [147] A. Kumar, I.Y. Galaev et B. Mattiasson : Affinity Chromatography: Methods and Protocols, volume 421 de Methods in Molecular Biology, chapitre Affinity precipitation of proteins using metal chelates, pages 37–52. Humana Press, second edition édition, 2008.
  • [148] J. P. Chen et A. S. Hoffman : Polymer-protein conjugates. ii. affinity precipitation separation of human immunogammaglobulin by a poly(n-isopropylacrylamide)-protein a conjugate. Biomaterials, 11(9):631–634, Nov 1990, doi:10.1016/0142-9612(90)90020-Q.
  • [149] B. Mattiasson, A. Kumar et Galaev IYu : Affinity precipitation of proteins: design criteria for an efficient polymer. J Mol Recognit, 11(1-6):211–216, 1998, doi:<211::AID-JMR425>3.0.CO;2-Y 10.1002/(SICI)1099-1352(199812)11:1/6<211::AID-JMR425>3.0.CO;2-Y.
  • [150] D. C. Roepke, S. M. Goyal, C. J. Kelleher, D. A. Halvorson, A. J. Abraham, R. F. Freitas et E. L. Cussler : Use of temperature-sensitive gel for concentration of influenza virus from infected allantoic fluids. J Virol Methods, 15(1):25–31, Jan 1987, doi:10.1016/0166-0934(87)90045-0.
  • [151] S. Anastase-Ravion, Z. Ding, A. Pellé, A. S. Hoffman et D. Letourneur : New antibody purification procedure using a thermally responsive poly(n-isopropylacrylamide)-dextran derivative conjugate. J Chromatogr B Biomed Sci Appl, 761(2):247–254, Sep 2001, doi:10.1016/S0378-4347(01)00336-X.
  • [152] Y. H. Bae, T. Okano et S. W. Kim : "on-off" thermocontrol of solute transport. ii. solute release from thermosensitive hydrogels. Pharm Res, 8(5):624–628, May 1991, doi:10.1023/A:1015860824953.
  • [153] R. Yoshida, K. Sakai, T. Okano et Y. Sakurai : Surface-modulated skin layers of thermal responsive hydrogels as on-off switches: Ii. drug permeation. J Biomater Sci Polym Ed, 3(3):243–252, 1992, doi:10.1163/156856292X00150.
  • [154] H. Ichikawa et Y. Fukumori : A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(n-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Release, 63(1-2):107–119, Jan 2000, doi:10.1016/S0168-3659(99)00181-9.
  • [155] A. Chilkoti, M.R. Dreher, D.E. Meyer et D. Raucher : Targeted drug delivery by thermally responsive polymers. Adv. Drug. Deliv. Rev., 54(5):613–630, Sep. 2002, doi:10.1016/S0169-409X(02)00041-8. [Revue].
  • [156] A. Gutowska, Y. H. Bae, H. Jacobs, F. Mohammad, D. Mix, J. Feijen et S. W. Kim : Heparin release from thermosensitive polymer coatings: in vivo studies. J Biomed Mater Res, 29(7):811–821, Jul 1995, doi:10.1002/jbm.820290705.
  • [157] S. Y. Lin, K. S. Chen et L. Run-Chu : Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties. Biomaterials, 22(22):2999–3004, Nov 2001, doi:10.1016/S0142-9612(01)00046-1.
  • [158] F. Eeckman, A.J. Moës et K. Amighi : Evaluation of a new controlled-drug delivery concept based on the use of thermoresponsive polymers. Int. J. Pharm., 241(1):113–125, Jul. 2002, doi:10.1016/S0378-5173(02)00198-9.
  • [159] A. Mizutani, A. Kikuchi, M. Yamato, H. Kanazawa et T. Okano : Preparation of thermoresponsive polymer brush surfaces and their interaction with cells. Biomaterials, 29(13):2073–2081, May 2008, doi:10.1016/j.biomaterials.2008.01.004.
  • [160] Y. Hou, A.R. Matthews, A.M. Smitherman, A.S. Bulick, M.S. Hahn, H. Hou, A. Han et M.A. Grunlan : Thermoresponsive nanocomposite hydrogels with cell-releasing behavior. Biomaterials, 29(22):3175–3184, Aug. 2008, doi:10.1016/j.biomaterials.2008.04.024.
  • [161] T. Takezawa, Y. Mori et K. Yoshizato : Cell culture on a thermo-responsive polymer surface. Biotechnology (N Y), 8(9):854–856, Sep 1990, doi:10.1038/nbt0990-854.
  • [162] A. Kushida, M. Yamato, C. Konno, A. Kikuchi, Y. Sakurai et T. Okano : Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated madin-darby canine kidney (mdck) cell sheets. J Biomed Mater Res, 51(2):216–223, Aug 2000, doi:<216::AID-JBM10>3.0.CO;2-K 10.1002/(SICI)1097-4636(200008)51:2<216::AID-JBM10>3.0.CO;2-K.
  • [163] Y. H. An, D. Webb, A. Gutowska, V. A. Mironov et R. J. Friedman : Regaining chondrocyte phenotype in thermosensitive gel culture. Anat. Rec. A, 263(4):336–341, Aug 2001, doi:10.1002/ar.1114.
  • [164] T. Okano, N. Yamada, H. Sakai et Y. Sakurai : A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(n-isopropylacrylamide). J Biomed Mater Res, 27(10):1243–1251, Oct 1993, doi:10.1002/jbm.820271005.
  • [165] H. A. von Recum, T. Okano, S. W. Kim et P. S. Bernstein : Maintenance of retinoid metabolism in human retinal pigment epithelium cell culture. Exp Eye Res, 69(1):97–107, Jul 1999, doi:10.1006/exer.1999.0682.
  • [166] M. Yamato, O. H. Kwon, M. Hirose, A. Kikuchi et T. Okano : Novel patterned cell coculture utilizing thermally responsive grafted polymer surfaces. J Biomed Mater Res, 55(1):137–140, Apr 2001, doi:<137::AID-JBM180>3.0.CO;2-L 10.1002/1097-4636(200104)55:1<137::AID-JBM180>3.0.CO;2-L.
  • [167] T. Aoki, Y. Nagao, E. Terada, K. Sanui, N. Ogata, N. Yamada, Y. Sakurai, K. Kataoka et T. Okano : Endothelial cell differentiation into capillary structures by copolymer surfaces with phenylboronic acid groups. J Biomater Sci Polym Ed, 7(7):539–550, 1995, doi:10.1163/156856295X00463.
  • [168] H. A. von Recum, S. W. Kim, A. Kikuchi, M. Okuhara, Y. Sakurai et T. Okano : Novel thermally reversible hydrogel as detachable cell culture substrate. J Biomed Mater Res, 40(4):631–639, Jun 1998, doi:<631::AID-JBM15>3.0.CO;2-I 10.1002/(SICI)1097-4636(19980615)40:4<631::AID-JBM15>3.0.CO;2-I.
  • [169] M.T. Moran, W.M. Carroll, A. Gorelov et Y. Rochev : Intact endothelial cell sheet harvesting from thermoresponsive surfaces coated with cell adhesion promoters. J. R. Soc. Interface, 4(17):1151–1157, Dec. 2007, doi:10.1098/rsif.2007.1023.
  • [170] T. Okano, N. Yamada, M. Okuhara, H. Sakai et Y. Sakurai : Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials, 16(4):297–303, Mar 1995, doi:10.1016/0142-9612(95)93257-E.
  • [171] M. Maeda, C. Nishimura, D. Umeno et M. Takagi : Psoralen-containing vinyl monomer for conjugation of double-helical dna with vinyl polymers. Bioconjug Chem, 5(6):527–531, 1994, doi:10.1021/bc00030a007.
  • [172] D. Umeno, M. Kawasaki et M. Maeda : Water-soluble conjugate of double-stranded dna and poly(n-isopropylacrylamide) for one-pot affinity precipitation separation of dna-binding proteins. Bioconjug Chem, 9(6):719–724, 1998, doi:10.1021/bc980019f.
  • [173] W. L. Hinrichs, N. M. Schuurmans-Nieuwenbroek, P. van de Wetering et W. E. Hennink : Thermosensitive polymers as carriers for dna delivery. J Control Release, 60(2-3):249–259, Aug 1999, doi:10.1016/S0168-3659(99)00075-9.
  • [174] M. Kurisawa, M. Yokoyama et T. Okano : Gene expression control by temperature with thermo-responsive polymeric gene carriers. J Control Release, 69(1):127–137, Oct 2000, doi:10.1016/S0168-3659(00)00297-2.
  • [175] T. G. Park et A. S. Hoffman : Synthesis and characterization of a soluble, temperature-sensitive polymer-conjugated enzyme. J Biomater Sci Polym Ed, 4(5):493–504, 1993, doi:10.1163/156856293X00159.
  • [176] Z. Ding, G. Chen et A. S. Hoffman : Synthesis and purification of thermally sensitive oligomer-enzyme conjugates of poly(n-isopropylacrylamide)-trypsin. Bioconjug Chem, 7(1):121–126, 1996, doi:10.1021/bc950087r.
  • [177] Z. Ding, G. Chen et A. S. Hoffman : Unusual properties of thermally sensitive oligomer-enzyme conjugates of poly(n-isopropylacrylamide)-trypsin. J Biomed Mater Res A, 39(3):498–505, Mar 1998, doi:<498::AID-JBM22>3.0.CO;2-5 10.1002/(SICI)1097-4636(19980305)39:3<498::AID-JBM22>3.0.CO;2-5.
  • [178] G. Chen et A. S. Hoffman : Synthesis of carboxylated poly(nipaam) oligomers and their application to form thermo-reversible polymer-enzyme conjugates. J Biomater Sci Polym Ed, 5(4):371–382, 1994, doi:10.1163/156856294X00086.
  • [179] L. V. Sigolaeva, N. L. Eremeev et N. F. Kazanskaia : Anomalous temperature dependence of the activity of immobilized alpha-chymotrypsin preparations. Bioorg Khim, 20(3):268–273, Mar 1994.
  • [180] J. P. Chen, H. J. Yang et A. S. Hoffman : Polymer-protein conjugates. i. effect of protein conjugation on the cloud point of poly (n-isopropylacrylamide). Biomaterials, 11(9):625–630, Nov 1990, doi:10.1016/0142-9612(90)90019-M.
  • [181] P. S. Stayton, T. Shimoboji, C. Long, A. Chilkoti, G. Chen, J. M. Harris et A. S. Hoffman : Control of protein-ligand recognition using a stimuli-responsive polymer. Nature, 378(6556):472–474, Nov 1995, doi:10.1038/378472a0.
  • [182] Z. Ding, C. J. Long, Y. Hayashi, E. V. Bulmus, A. S. Hoffman et P. S. Stayton : Temperature control of biotin binding and release with a streptavidin-poly(n-isopropylacrylamide) site-specific conjugate. Bioconjug Chem, 10(3):395–400, 1999, doi:10.1021/bc980108s.
  • [183] S. Carter, S. Rimmer, R. Rutkaite, L. Swanson, J.P.A. Fairclough, A. Sturdy et M. Webb : Highly branched poly(n-isopropylacrylamide) for use in protein purification. Biomacromolecules, 7(4):1124–1130, Apr. 2006, doi:10.1021/bm050929h.
  • [184] D.L. Huber, R.P. Manginell, M.A. Samara, B.-I. Kim et B.C. Bunker : Programmed adsorption and release of proteins in a microfluidic device. Science, 301(5631):352–354, July 2003, doi:10.1126/science.1080759.
  • [185] D. O H Teare, D. C. Barwick, W. C E Schofield, R. P. Garrod, A. Beeby et J. P S Badyal : Functionalization of solid surfaces with thermoresponsive protein-resistant films. J. Phys. Chem. B, 109(47):22407–22412, Dec. 2005, doi:10.1021/jp052869f.
  • [186] M.D. Kurkuri, M.R. Nussio, A. Deslandes et N.H. Voelcker : Thermosensitive copolymer coatings with enhanced wettability switching. Langmuir, 24(8):4238–4244, Apr. 2008, doi:10.1021/la703668s.
  • [187] A.E. Ivanov, J. Ekeroth, L. Nilsson, B. Mattiasson, B. Bergenståhl et I.Y. Galaev : Variations of wettability and protein adsorption on solid siliceous carriers grafted with poly(n-isopropylacrylamide). J. Colloid. Interface Sci., 296(2):538–544, Apr. 2006, doi:10.1016/j.jcis.2005.09.064.
  • [188] Y. Matsumaru, A. Hyodo, T. Nose, S. Ito, T. Hirano et S. Ohashi : Application of thermosensitive polymers as a new embolic material for intravascular neurosurgery. J Biomater Sci Polym Ed, 7(9):795–804, 1996, doi:10.1163/156856296X00138.
  • [189] M. Andersson, A. Axelsson et G. Zacchi : Diffusion of glucose and insulin in a swelling n-isopropylacrylamide gel. Int. J. Pharm., 157(2):199–208, Nov 1997, doi:10.1016/S0378-5173(97)00243-3.
  • [190] H. Kanazawa, K. Yamamoto, Y. Kashiwase, Y. Matsushima, N. Takai, A. Kikuchi, Y. Sakurai et T. Okano : Analysis of peptides and proteins by temperature-responsive chromatographic system using n-isopropylacrylamide polymer-modified columns. J Pharm Biomed Anal, 15(9-10):1545–1550, Jun 1997, doi:10.1016/S0731-7085(96)02004-3.
  • [191] H. Kanazawa, T. Sunamoto, Y. Matsushima, A. Kikuchi et T. Okano : Temperature-responsive chromatographic separation of amino acid phenylthiohydantions using aqueous media as the mobile phase. Anal Chem, 72(24):5961–5966, Dec 2000, doi:10.1021/ac0004658.
  • [192] H. Lakhiari, T. Okano, N. Nurdin, C. Luthi, P. Descouts, D. Muller et J. Jozefonvicz : Temperature-responsive size-exclusion chromatography using poly(n-isopropylacrylamide) grafted silica. Biochim Biophys Acta, 1379(3):303–313, Mar 1998, doi:10.1016/S0304-4165(97)00110-4.
  • [193] D.J. Harrison, P.G. Glavina et A. Manz : Towards miniaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors. Sens. Actuators B Chem., 10(2):107–116, Jan. 1993, doi:10.1016/0925-4005(93)80033-8.
  • [194] G. Ocvirk, E. Verpoorte, A. Manz et H.M. Widmer : Integration of a micro liquid chromatograph onto a silicon chip. In Proc. of The 8th International Conference on Solid-State Sensors and Actuators (Transducers’95) and Eurosensors IX, volume 1, pages 756–759, Stockholm, Sweden, 25–29 June 1995. URI : http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=717342.
  • [195] A. Daridon, V. Fascio, J. Lichtenberg, R. Wütrich, H. Langen, E. Verpoorte et N. F. de Rooij : Multi-layer microfluidic glass chips for microanalytical applications. Fresenius J. Anal. Chem., 371(2):261–269, Sep. 2001, doi:10.1007/s002160101004.
  • [196] S.R. Quake et A. Scherer : From micro- to nanofabrication with soft materials. Science, 290(5496):1536–1540, Nov. 2000, doi:10.1126/science.290.5496.1536.
  • [197] H. Becker et C. Gärtner : Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis, 21(1):12–26, 2000, doi:<12::AID-ELPS12>3.0.CO;2-7 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7.
  • [198] P. Abgrall : Microtechnologies polymères pour les laboratoires sur puces. Thèse de doctorat, Université Paul Sabatier, Toulouse, 2006.
  • [199] D.C. Duffy, J.C. McDonald, O.J.A. Schueller et G.M. Whitesides : Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem., 70(23):4974–4984, 1998, doi:10.1021/ac980656z.
  • [200] J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Shueller et G.M. Whitesides : Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 21(1):27–40, 2000, doi:<27::AID-ELPS27>3.0.CO;2-C 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C.
  • [201] J.M.K. Ng, I. Gitlin, A.D. Stroock et G.M. Whitesides : Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis, 23(20):3461–3473, Oct 2002, doi:<3461::AID-ELPS3461>3.0.CO;2-8 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8.
  • [202] C.S. Effenhauser, GJ.M. Bruin, A. Paulus et M. Ehrat : Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal. Chem., 69(17):3451–3457, 1997, doi:10.1021/ac9703919.
  • [203] J. Kuncova-Kallio et P.J. Kallio : PDMS and its suitability for analytical microfluidic devices. In Proc. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS ’06), pages 2486–2489, Aug. 2006.
  • [204] S.K. Sia et G.M. Whitesides : Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis, 24(21):3563–3576, 2003, doi:10.1002/elps.200305584.
  • [205] M.C. Bélanger et Y. Marois : Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J. Biomed. Mater. Res. B Appl. Biomater., 58(5):467–477, 2001, doi:10.1002/jbm.1043.
  • [206] J.C. Lotters, W. Olthuis, P.H. Veltink et P. Bergveld : The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng., 7(3):145–147, Sept. 1997, doi:10.1088/0960-1317/7/3/017.
  • [207] A.C.M. Kuo : Polymer Data Handbook, chapitre Poly(dimethylsiloxane), pages 411–435. Oxford University Press, Inc., 1999.
  • [208] J.N. Lee, C. Park et G.M. Whitesides : Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem., 75(23):6544–6554, Dec. 2003, doi:10.1021/ac0346712.
  • [209] M. Hunter, M. Gordon, A. Barry, J. Hyde et R. Heidenreich : Properties of polyorganosilox surfaces on glass. Ind. Eng. Chem., 39(11):1389–1395, 1947, doi:10.1021/ie50455a605.
  • [210] S. Thorslund : Microfluidics in surface-modified 'PDMS': Towards miniaturized diagnostic tools. Thèse de doctorat, Uppsala University, 2006. URI : http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7270.
  • [211] P. Abgrall et A.-M. Gué : Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem — a review. J. Micromech. Microeng., 17:R15–R49, 2007, doi:10.1088/0960-1317/17/5/R01.
  • [212] B.A. Weisenberg et D.L. Mooradian : Hemocompatibility of materials used in microelectromechanical systems: platelet adhesion and morphology in vitro. J. Biomed. Mater. Res. A, 60(2):283–291, May 2002, doi:10.1002/jbm.10076.
  • [213] C. Yu, M.H. Davey, F. Svec et J.M. Fréchet : Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal. Chem., 73(21):5088–5096, Nov. 2001, doi:10.1021/ac0106288.
  • [214] W.C. Chang, L.P. Lee et D. Liepmann : Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. Lab Chip, 5:64–73, 2005, doi:10.1039/b400455h.
  • [215] R.D. Oleschuk, L.L. Shultz-Lockyear, Y. Ning et D. J. Harrison : Trapping of bead-based reagents within microfluidic systems: on-chip solid-phase extraction and electrochromatography. Anal. Chem., 72(3):585–590, Feb. 2000, doi:10.1021/ac990751n.
  • [216] M.A.M. Gijs : Microfluidic Technologies for Miniaturized Analysis Systems, chapitre Magnetic Beads in Microfluidic Systems – Towards New Analytical Applications, pages 241–274. Springer US, 2007.
  • [217] G.T.T. Gibson, T.B. Koerner, R. Xie, K. Shah, N. de Korompay et R.D. Oleschuk : Entrapment of functionalized silica microspheres with photo-initiated acrylate-based polymers. J. Colloid Interface Sci., 320(1):82–90, Apr. 2008, doi:10.1016/j.jcis.2008.01.027.
  • [218] M. Tondra, M. Granger, R. Fuerst, M. Porter, C. Nordman, J. Taylor et S. Akou : Design of integrated microfluidic device for sorting magnetic beads in biological assays. IEEE Trans. Mag., 37(4:1):2621–2623, Jul. 2001, doi:10.1109/20.951254.
  • [219] H. Andersson, C. Jönsson, C. Moberg et G. Stemme : Patterned self-assembled beads in silicon channels. Electrophoresis, 22(18):3876–3882, Oct. 2001, doi:<3876::AID-ELPS3876>3.0.CO;2-P 10.1002/1522-2683(200110)22:18<3876::AID-ELPS3876>3.0.CO;2-P.
  • [220] J. Han et H.G. Craighead : Separation of long dna molecules in a microfabricated entropic trap array. Science, 288(5468):1026–1029, May 2000, doi:10.1126/science.288.5468.1026.
  • [221] A.-E. Saliba, E. Psichari, L. Saias, N. Minc, V. Studer et J.-L. Viovy : Ferrofluid pattern for guiding magnetic beads self-organisation: Application to affinity cell separation and on-chip cell culture. In Proceedings of the 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences ('µ'TAS’07), volume 1, pages 575–577, Paris, France, 7–11 Oct. 2007.
  • [222] David Jugieu : Conception et réalisation d’une matrice de microéjecteurs thermiques adressables individuellement pour la fonctionnalisation de biopuce. Thèse de doctorat, Institut national polytechnique de Toulouse, 2005. URI : http://ethesis.inp-toulouse.fr/archive/00000072/.
  • [223] M. Dumonteuil et T. Camps : Polysilicon microheaters 2D addressed array using symmetrical thresholds elements. In Proceedings of the 7th International workshop on electronics, control, modelling and signals ('ECMS'’2005), Toulouse (France), 17–20 May 2005.
  • [224] M. Dumonteuil : Solution générique pour l’adressage matriciel de micro-actionneurs thermiques et optimisation de micro-sources thermiques. Thèse de doctorat, Université Toulouse III - Paul Sabatier, 2006.
  • [225] T. Camps, B. Marty, J. Tasselli, A. Marty, L. Bouscayrol et J.C. Marrot : A generic technological approach for thermal sensors and actuators development. In Proceedings of the 18th workshop on micromechanics 'E'urope ('MME' 2007), pages 47–50, Guimarães (Portugal), 16–18 Sept. 2007.
  • [226] C. Kittel : Physique de l’état solide. Sciences Sup. Dunod, 7e édition, juin 1998.
  • [227] G. Paumier, J. Sudor, E. Collé, B. Marty, A. Bancaud, T. Camps et A.-M. Gué : Electrokinetic mixers based on stimuli-responding surfaces. In Proceedings of the 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences ('µ'TAS’07), volume 1, pages 910–912, Paris, France, 7–11 Oct. 2007.
  • [228] S. Hjertén : High-performance electrophoresis : Elimination of electroendosmosis and solute adsorption. J. Chromatogr. A, 347:191–198, 1985, doi:10.1016/S0021-9673(01)95485-8.
  • [229] A. Hoang et F. Vinet : Brevet EN0016940. Publication 2818662, 2002.
  • [230] G. Paumier : Immuno-test sur chimie CEA-2 – Fonctionnalisation CEA-2 en phase vapeur. Rapport de stage, Institut national des sciences appliquées de Toulouse, 2004.
  • [231] S. Raymond et L. Weintraub : Acrylamide gel as a supporting medium for zone electrophoresis. Science, 130(3377):711, Sept. 1959, doi:10.1126/science.130.3377.711.
  • [232] J. Horvath et V. Dolník : Polymer wall coatings for capillary electrophoresis. Electrophoresis, 22(4):644–655, 2001, doi:10.1002/1522-2683(200102)22:4.
  • [233] E.A.S. Doherty, R.J. Meagher, M.N. Albarghouthi et A.E. Barron : Microchannel wall coatings for protein separations by capillary and chip electrophoresis. Electrophoresis, 24(1-2):34–54, Jan. 2003, doi:10.1002/elps.200390029.
  • [234] A. Giz, H. Çatalgil Giz, A. Alb, J.-L. Brousseau et W.S. Reed : Kinetics and mechanics of acrylamide polymerization from absolute, online monitoring of polymerization reaction. Macromol., 34:1180–1191, 2001, doi:10.1021/ma000815s.
  • [235] S. Hjertén : Coating for electrophoresis tube. US patent 4,680,201, Oct. 1985. URI : http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=4,680,201.PN.&OS=PN/4,680,201&RS=PN/4,680,201.
  • [236] G. Paumier : Contrôle nano-hydrodynamique de l’interface solide-liquide par des polymères actifs : Effets sur le flux électrocinétique dans les microcanaux. Mémoire de D.E.A., Institut National des Sciences Appliquées de Toulouse, 2005.
  • [237] T. Young : An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond., 95:65–87, 1805, doi:10.1098/rstl.1805.0005.
  • [238] P.-G. De Gennes : Wetting: Statics and dynamics. Rev. Mod. Phys., 57(3):827–863, 1985, doi:10.1103/RevModPhys.57.827.
  • [239] P.-G. De Gennes, F. Brochard-Wyart et D. Quéré : Gouttes, bulles, perles et ondes. Belin, 2005.
  • [240] S.-Y. Lin, H.-C. Chang, L.-W. Lin et P.-Y. Huang : Measurement of dynamic/advancing/receding contact angle by video-enhanced sessile drop tensiometry. Rev. Sci. Instrum., 67(8):2852–2858, Aug. 1996, doi:10.1063/1.1147117.
  • [241] S. Balamurugan, S. Mendez, S.S. Balamurugan, M.J. II O’Brien et G.P. López : Thermal response of poly(N-isopropylacrylamide) brushes probed by surface plasmon resonance. Langmuir, 19(7):2545–2549, 2003, doi:10.1021/la026787j.
  • [242] N.J. Harrick : Internal reflection spectroscopy. John Wiley & Sons Inc, 1967.
  • [243] N. Rochat, M. Olivier, A. Chabli, F. Conne, G. Lefeuvre et C. Boll-Burdet : Multiple internal reflection infrared spectroscopy using two-prism coupling geometry: A convenient way for quantitative study of organic contamination on silicon wafers. Appl. Phys. Lett., 77(14):2249–2251, Oct. 2000, doi:10.1063/1.1314885.
  • [244] N. Rochat, A. Troussier, A. Hoang et F. Vinet : Multiple internal reflection spectroscopy for quantitative infrared analysis of thin-film surface coating for biological environment. Mater. Sci. Eng. C Biomim. Mater. Sens. Syst., 23(1-2):99–103, 2003, doi:10.1016/S0928-4931(02)00239-4.
  • [245] B.C. Smith : Fundamentals of Fourier Transform Infrared Spectroscopy. CRC, Dec. 1995.
  • [246] R.T. Conley : Infrared spectroscopy. Allyn and Bacon, Boston, 2nd edition édition, 1972.
  • [247] G. Paumier, J. Sudor, A.-M. Gué, F. Vinet, M. Li, Y.J. Chabal, A. Estève et M. Djafari-Rouhani : Nanoscale actuation of electrokinetic flows on thermoreversible surfaces. Electrophoresis, 29(6):1245–1252, Mar. 2008, doi:10.1002/elps.200700396.
  • [248] C. Li, Y. Yang, H.G. Craighead et K.H. Lee : Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method. Electrophoresis, 26(9):1800–1806, May 2005, doi:10.1002/elps.200410309.
  • [249] B.C. Bunker, D.L. Huber, R.P. Manginell, B.-I. Kim, A.K. Boal, G.D. Bachand, S.B. Rivera, J.M. Bauer et C. Matzke : Incorporation of bioactive materials into integrated systems. In Proceedings of SPIE, volume 5220 de Nanofabrication Technologies, 2003. URI : http://supercon.snu.ac.kr/~kbyung/paperpdf/spie.pdf.
  • [250] A.E. Kamholz, B.H. Weigl, B.A. Finlayson et P. Yager : Quantitative analysis of molecular interaction in a microfluidic channel: the t-sensor. Anal. Chem., 71(23):5340–5347, Dec 1999, doi:10.1021/ac990504j.
  • [251] M. Kakuta, F. G. Bessoth et A. Manz : Microfabricated devices for fluid mixing and their application for chemical synthesis. Chem. Rec., 1(5):395–405, 2001, doi:10.1002/tcr.1023.
  • [252] J.M. Ottino et S. Wiggins : Introduction: mixing in microfluidics. Philos. Transact. A Math. Phys. Eng. Sci., 362(1818):923–935, May 2004, doi:10.1098/rsta.2003.1355.
  • [253] N.-T. Nguyen et Z. Wu : Micromixers – a review. J. Micromech. Microeng., 15(2):R1–R16, 2005, doi:10.1088/0960-1317/15/2/R01.
  • [254] C.-C. Hong, J.-W. Choi et C.H. Ahn : A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab. Chip., 4(2):109–113, Apr. 2004, doi:10.1039/b305892a.
  • [255] F.G. Bessoth, A.J. deMello et A. Manz : Microstructure for efficient continuous flow mixing. Anal. Commun., 36(6):213–215, 1999, doi:10.1039/a902237f.
  • [256] A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone et G.M. Whitesides : Chaotic mixer for microchannels. Science, 295(5555):647–651, Jan 2002, doi:10.1126/science.1066238.
  • [257] A. Adjari : Electro-osmosis on inhomogeneously charged surfaces. Phys. Rev. Lett., 75(4):755–758, July 1995, doi:10.1103/PhysRevLett.75.755.
  • [258] A.D. Stroock, M. Weck, D.T. Chiu, W.T. Huck, P.J. Kenis, R.F. Ismagilov et G.M. Whitesides : Patterning electro-osmotic flow with patterned surface charge. Phys. Rev. Lett., 84(15):3314–3317, Apr. 2000, doi:10.1103/PhysRevLett.84.3314.
  • [259] A.D. Stroock et G.M. Whitesides : Controlling flows in microchannels with patterned surface charge and topography. Acc. Chem. Res., 36(8):597–604, Aug. 2003, doi:10.1021/ar0202870.
  • [260] F. Rouessac, A. Rouessac et D. Cruché : Analyse chimique. Dunod, 6th édition, 2004.
  • [261] E. Brunet : Études de systèmes microfluidiques : agrégation de particules, électrocinétique linéaire, analyse de protéines. Thèse de doctorat, Université Paris 6, 2004. URI : http://pastel.paristech.org/archive/00000986/01/E_Brunet_These.pdf.
  • [262] H. Helmholtz : Studien über electrische Grenzschichten. Wiedemann’s Annalen der Physik und Chemie, 243(7):337–382, 1879. URI : http://www.weltderphysik.de/de/3001.php?bd=243.
  • [263] L.G. Gouy : Sur la constitution de la charge électrique à la surface d’un électrolyte. Journal de Physique Théorique et Appliquée, 9(1):457–468, 1910. URI : http://jphystap.journaldephysique.org/index.php?option=toc&url=/articles/jphystap/abs/1910/01/contents/contents.html.
  • [264] D.L. Chapman : A contribution to the theory of electrocapillarity. Philosophical Magazine, 25:475–481, 1913.
  • [265] O. Stern : The theory of the electrolytic double shift. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 30:508–516, 1924.
  • [266] A.T. Conlisk : The Debye-Hückel approximation: Its use in describing electroosmotic flow in micro-and nanochannels. Electrophoresis, 26(10):1896–1912, 2005, doi:10.1002/elps.200410238.
  • [267] B.J. Kirby et E.F. Jr. Hasselbrink : Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis, 25(2):187–202, 2004, doi:10.1002/elps.200305754.
  • [268] B.J. Kirby et E.F. Jr. Hasselbrink : Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis, 25(2):203–213, 2004, doi:10.1002/elps.200305755.
  • [269] F.F. Reuss : Sur un nouvel effet de l’électricité galvanique. Mémoires de la Societé Impériale des naturalistes de Moscou, 2:327–337, 1809. 553 957.
  • [270] S. Ghosal : Fluid mechanics of electroosmotic flow and its effects on band broadening in capillary electrophoresis. Electrophoresis, 25(2):214–228, 2004, doi:10.1002/elps.200305745.
  • [271] P. Mela, N.R. Tas, E.J.W. Berenschot, J. v. Nieuwkasteele et A. v.d. Berg : Electrokinetic pumping and detection of low-volume flows in nanochannels. Electrophoresis, 25(21-22):3687–3693, 2004, doi:10.1002/elps.200406083.
  • [272] N.A. Patankar et H.H. Hu : Numerical simulation of electroosmotic flow. Anal. Chem., 70(9):1870–1881, 1998, doi:10.1021/ac970846u.
  • [273] D. Ross, T.J. Johnson et L. Locascio : Imaging of electroosmotic flow in plastic microchannels. Anal. Chem., 73(11):2509–2515, 2001, doi:10.1021/ac001509f.
  • [274] C. Chaiyasut, Y. Takatsu, S. Kitagawa et T. Tsuda : Estimation of the dissociation constants for functional groups on modified and unmodified silica gel supports from the relationship between electroosmotic flow velocity and ph. Electrophoresis, 22(7):1267–1272, 2001, doi:<1267::AID-ELPS1267>3.0.CO;2-8 10.1002/1522-2683(200105)22:7<1267::AID-ELPS1267>3.0.CO;2-8.
  • [275] L. Szekely et R. Freitag : Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of electrochromatography systems. Electrophoresis, 26(10):1928–1939, 2005, doi:10.1002/elps.200410194.
  • [276] P. Santi et R.H. Guy : Reverse iontophoresis – Parameters determining electroosmotic flow: I. pH and ionic strength. Electrophoresis, 38(2-3):159–165, 1996, doi:10.1016/0168-3659(95)00115-8.
  • [277] M. Cretich, M. Chiari, G. Pirri et A. Crippa : Electroosmotic flow suppression in capillary electrophoresis: Chemisorption of trimethoxysilane-modified polydimethylacrylamide. Electrophoresis, 26(10):1913–1919, 2005, doi:10.1002/elps.200410368.
  • [278] X. Huang, M.J. Gordon et R.N. Zare : Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal. Chem., 60(17):1837–1838, 1988, doi:10.1021/ac00168a040.
  • [279] I. Rodriguez et N. Chandrasekhar : Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices. Electrophoresis, 26(6):1114–1121, 2005, doi:10.1002/elps.200410155.