Page:Rebière - Mathématiques et mathématiciens.djvu/20

La bibliothèque libre.
Aller à : navigation, rechercher
Le texte de cette page a été corrigé et est conforme au fac-similé.
7
MORCEAUX CHOISIS ET PENSÉES

deur quelconque à l’unité est, la plupart du temps, impossible. Par exemple, si je demande combien il y a d”arbres dans une forêt, je ne puis le savoir qu’en comptant les arbres un à un, ce qui demanderait un temps infini. Il en est de même dans la plupart des cas. Prenons le plus facile : la mesure d’une ligne droite par la superposition d’une de ses parties. Cela suppose : 1o que nous pouvons parcourir la ligne, ce qui exclut les longueurs inaccessibles (par exemple la distance des corps célestes) ; 2o que la ligne ne soit ni trop grande, ni trop petite, qu’elle soit convenablement située : par exemple horizontale, non verticale. Si cela est vrai des lignes droites, cela est vrai à plus forte raison des lignes courbes, des surfaces, des volumes, et à plus forte raison encore des vitesses, des forces, etc. Comment toutes ces quantités peuvent-elles être mesurées ? C’est là le problème qui rend nécessaire les mathématiques.

Les mathématiques, dans leur essence même, ont donc pour objet de ramener les grandeurs non immédiatement mesurables à des grandeurs immédiatement mesurables. C’est par là qu’elles sont une science. En effet, l’intervalle qui sépare une grandeur à mesurer de la grandeur immédiatement mesurable peut être plus ou moins grand. De là une série de réductions, depuis la grandeur la plus éloignée jusqu’à la plus prochaine ; et c’est la réduction de ces grandeurs les unes aux autres qui constitue la science ; soit, par exemple, à mesurer la chute verticale d’un corps pesant. Il y a ici deux quantités distinctes : la hauteur d’où le corps est tombé, et le temps de la chute. Or ces deux quan-