Page:Revue de métaphysique et de morale - 2.djvu/394

La bibliothèque libre.
Le texte de cette page a été corrigé et est conforme au fac-similé.
380
revue de métaphysique et de morale.

Donc il est vrai de 2.

Or s’il est vrai de 2, il est vrai de 3.,

Donc il est vrai de 3.


et ainsi de suite.

On voit que la conclusion de chaque syllogisme sert de mineure au suivant.

De plus les majeures de tous nos syllogismes peuvent être ramenées à une formule unique.

Si le théorème est vrai de , il l’est de .

On voit donc que dans le raisonnement par récurrence, on se borne à énoncer la mineure du premier syllogisme, et la formule générale qui contient comme cas particuliers toutes les majeures.

Cette suite de syllogismes qui ne finirait jamais se trouve ainsi réduite à une phrase de quelques lignes.

Il est facile maintenant de comprendre pourquoi toute conséquence particulière d’un théorème peut, comme je l’ai expliqué plus haut, être vérifiée par des procédés purement analytiques.

Si au lieu de montrer que notre théorème est vrai de tous les nombres, nous voulons seulement faire voir qu’il est vrai du nombre 6 par exemple, il nous suffira d’établir les 5 premiers syllogismes de notre cascade ; il nous en faudrait 9 si nous voulions démontrer le théorème pour le nombre 10 ; il nous en faudrait davantage encore pour un nombre plus grand ; mais quelque grand que soit ce nombre, nous finirions toujours par l’atteindre, et la vérification analytique serait possible.

Et cependant, quelque loin que nous allions ainsi nous ne nous élèverions jamais jusqu’au théorème général, applicable à tous les nombres, qui seul peut être objet de science. Pour y arriver, il faudrait une infinité de syllogismes, il faudrait franchir un abîme que la patience de l’analyste, réduit aux seules ressources de la logique formelle, ne parviendra jamais à combler.

Je demandais au début pourquoi on ne saurait concevoir un esprit assez puissant pour apercevoir d’un seul coup d’œil l’ensemble des vérités mathématiques.

La réponse est aisée maintenant ; un joueur d’échecs peut combiner quatre coups, cinq coups d’avance ; mais, si extraordinaire qu’on le suppose, il n’en préparera jamais qu’un nombre fini ; s’il applique ses facultés à l’arithmétique, il ne pourra en apercevoir les vérités générales d’une seule intuition directe ; pour parvenir au plus