Annales de mathématiques pures et appliquées/Tome 02/Géométrie, article 1

La bibliothèque libre.

GÉOMÉTRIE.

Solution d’un problème de géométrie, dépendant de la
théorie des maximis et minimis ;
Par M. Lhuilier, professeur de mathématiques à l’académie
impériale de Genève.
≈≈≈≈≈≈≈≈≈

Problème. Par un point donné de position, dans un angle connu, faire passer une droite de manière que sa partie interceptée entre les côtés de l’angle soit la moindre possible ?[1]

Soit , (fig. 1) un angle donné, et soit, un point donné entre les côtés de cet angle ; il s’agit de mener, par ce point , une droite dont la partie interceptée dans l’angle , soit la moindre possible.

Solution. Soient et deux droites égales inscrites dans l’angle , et passant par . De ce point comme centre, avec les rayons et soient décrits deux arcs de cercle et compris dans les angles et

Puisque ,

on doit avoir

Or,,

,

donc

Donc, lorsque est la plus petite, on doit avoir

d’où

Par soient menées à et des parallèles rencontrant ces droites en et  ; et, par le même point soient menées aux mêmes droites des perpendiculaires les rencontrant en et  ; on aura

donc

Premier cas. Que l’angle soit droit, on aura

donc

et par conséquent

donc

on aura de même

Le problème sera donc résolu puisque et seront donnés en fonctions de quantités connues, et on voit qu’il n’aura alors qu’une solution.

Deuxième cas. Que l’angle ne soit pas droit. On parvient à une équation du troisième degré[2], soit qu’on prenne pour inconnue la distance du point à quelque point donné sur , soit qu’on prenne pour inconnues les tangentes des angles ou .

Je vais, par exemple, chercher la position du point , par sa distance à quelque point donné sur , et construire l’équation correspondante.

On a, comme il vient d’être prouvé ci-dessus,

or,

donc

[3]

et conséquemment

[4] donc

ou

ou enfin[5].

Sur comme diamètre, soit décrit un cercle, et du point soit élevée à une perpendiculaire rencontrant en la circonférence de ce cercle ; on aura substituant donc dans la proportion ci-dessus, elle deviendra

ou

d’où

De là découle la construction suivante pour déterminer le point .

Soit parallèle à rencontrant en  ; soit perpendiculaire à  ; soit aussi perpendiculaire à et rencontrant en . Sur comme diamètre, soit décrit un cercle ; soit ensuite décrite la parabole qui est le lien géométrique de l’équation par le point où cette parabole rencontre la circonférence du cercle soit abaissée une perpendiculaire sur  ; alors le pied de cette perpendiculaire sera le point cherché ; de manière qu’en menant par et une droite terminée en a , cette droite sera la plus petite de toutes celles qui, passant par se termineront à et .

Remarque I.re L’équation devient indépendante de la nature des lignes entre lesquelles il faut inscrire la plus petite des droites qui passent par le point donné ; en substituant aux angles les angles que fait avec les tangentes menées par les points aux courbes sur lesquelles ces points se trouvent situés.

Remarque II.me Lorsque le point P est sur la droite qui coupe l’angle en deux parties égales, la plus petite des droites à inscrire est (comme il est connu) perpendiculaire à la droite .

Remarque III.me On pourrait obtenir le minimum proposé, en résolvant ce problème déterminé : Inscrire à un angle donné une droite d’une longueur donnée passant par un point donné ? et en cherchant les limites résultant de la construction. Or, ce problème déterminé est susceptible d’une construction élégante par le cercle et par l’hyperbole rapportés à ses asymptotes.

Remarque IV.me On ramène à peu près de la même manière à un problème déterminé les problèmes suivans : Par un point donné, sur une surface, sphérique, et dans un angle sphérique formé sur cette surface ; mener un arc de grand cercle dont la partie inscrite dans l’angle sphérique soit la plus petite, ou tel que l’aire ou le contour du triangle retranché soit un minimum ?

  1. Ce problème a été traité par M. Puissant, (Recueil de diverses propositions, etc., deuxième édition, pag. 423) ; mais son analise est toute différente de celle de M. Lhuilier.
    (Note des éditeurs.)
  2. On parvient à une équation fort simple en procédant comme il suit :

    Soit , (fig. 2.) l’angle donné, soit le point donné et soit enfin la droite cherchée. Soit mené soient faits on aura donc

    donc

    et par conséquent

    Il faudra donc, pour avoir la valeur de qui convient au minimum, égaler à zéro la différentielle de

    ce qui donnera

    En divisant cette équation par elle devient

    équation équivalente à celle-ci

    laquelle devient, en chassant les dénominateurs et réduisant,

    équation du troisième degré, sans second terme.

    (Note des éditeurs.)
  3. À cause des triangles semblables et .
  4. Par les triangles semblables, on a les deux proportions
  5. À cause de ou , qui donne
    (Note des éditeurs.)