L’Encyclopédie/1re édition/CONVERSE

La bibliothèque libre.
Sauter à la navigation Sauter à la recherche

CONVERSE, adj. en Géométrie. Quand on met en supposition une vérité que l’on vient de démontrer, pour en déduire le principe qui a servi à sa démonstration, c’est-à-dire quand la conclusion devient principe & le principe conclusion, la proposition qui exprime cela s’appelle la converse de celle qui la précede.

Par ex. on démontre en Géométrie que si les deux côtés d’un triangle sont égaux, les deux angles opposés à ces côtés le sont aussi ; & par la proposition converse, si les deux angles d’un triangle sont égaux, les côtés opposés à ces angles le seront aussi.

La converse s’appelle aussi inverse. Il y a plusieurs propositions dont l’inverse n’est pas vraie : par exemple cette proposition, les trois côtés d’un triangle étant donnés, on peut connoître les trois angles, est vraie & facile à démontrer, mais son inverse seroit fausse ; les trois angles étant donnés, on connoît les trois côtés ; car il y a une infinité de triangles qui peuvent avoir les mêmes angles, sans avoir les mêmes côtés. Voyez Triangles semblables. C’est à quoi les faiseurs d’élémens de Géométrie doivent être fort attentifs pour ne pas induire en erreur les commençans. (O)