Page:Descartes - Œuvres, éd. Adam et Tannery, VI.djvu/466

La bibliothèque libre.
Sauter à la navigation Sauter à la recherche
Cette page n’a pas encore été corrigée


444
371-372.
Œuvres de Descartes.

genre, et qu’on peut trouver deux moyennes proportionnelles par les sections coniques qui sont du premier ; et aussi pourcequ’on peut trouver quatre ou six moyennes proportionnelles par des lignes qui ne sont pas de genres si composés que sont AF et AH, ce serait une faute en géométrie que de les y employer. Et c’est une faute aussi, d’autre côté, de se travailler inutilement à vouloir construire quelque problème par un genre de lignes plus simple que sa nature ne permet.


De la nature des équations.

Or, afin que je puisse ici donner quelques règles pour éviter l’une et l’autre de ces deux fautes, il faut que je dise quelque chose en général de la nature des équations, c’est-à-dire des sommes composées de plusieurs termes partie connus, et partie inconnus, dont les uns sont égaux aux autres, ou plutôt qui, considérés tous ensemble, sont égaux à rien : car ce sera souvent le meilleur de les considérer en cette sorte.

Combien il peut y avoir de racines en chaque équation.

Sachez donc qu’en chaque équation, autant que la quantité inconnue a de dimensions, autant peut-il y avoir de diverses racines, c’est-à-dire de valeurs de cette quantité ; car, par exemple, si on suppose x égale à 2, ou chaque bien x - 2 égal à rien; et derechef x = 3, ou bien x – 3 = 0; en multipliant ces deux équations

x - 2 = 0, et x - 3 = 0,

l’une par l’autre, on aura

x2 - 5x + 6 = 0,

ou bien

x2 = 5x - 6,

qui est une équation en laquelle la quantité x vaut 2 et tout ensemble vaut 3. Que si derechef on fait