les trois longitudes correspondantes du Soleil ;
ses trois distances à la Terre ;
les trois longitudes héliocentriques de la comète ;
ses trois latitudes héliocentriques.
Cela posé :
On imaginera la lettre au centre du Soleil, la lettre au centre de la Terre, la lettre au centre de la comète, et la lettre à sa projection sur le plan de l’écliptique. On aura l’angle en prenant la différenee des longitudes géocentriques de la comète et du Soleil ; en multipliant ensuite le cosinus de cet angle par celui de la latitude géocentrique de la comète, on aura le cosinus de l’angle dans le triangle rectiligne on connaitra donc l’angle le côté ou et le côté ou on aura ainsi, par les règles de la Trigonométrie rectiligne, l’angle On aura ensuite la latitude héliocentrique de la comète, au moyen de l’équation
L’angle est le côté d’un triangle sphérique rectangle dont l’hypoténuse est l’angle et dont un des côtés est l’angle d’où l’on tire aisément et, par conséquent, la longitude héliocentrique de la comète. On aura de la même manière et et les valeurs de feront aisément connaître si le mouvement de la comète est direct ou rétrograde.
Si l’on conçoit les deux arcs de latitude et réunis au pôle de l’écliptique, ils y formeront un angle égal à et, dans le triangle sphérique formé par cet angle et par les côtés et le coté opposé à l’angle sera l’angle au soleil compris entre les deux rayons vecteur et On le déterminera facilement par les analogies connues de la Trigonométrie sphérique ou par la formule suivante
dans laquelle représente cet angle.