Aller au contenu

Page:Laplace - Œuvres complètes, Gauthier-Villars, 1878, tome 10.djvu/286

La bibliothèque libre.
Le texte de cette page a été corrigé et est conforme au fac-similé.

on aura ce résultat assez remarquable

supposons, par exemple, on aura

ces intégrales étant prises depuis jusqu’à partant,

On peut observer encore que, étant égal à on a

intégrale du premier membre de cette équation étant prise entre les deux valeurs imaginaires de qui rendent nulle la quantité et l’intégrale du second membre étant prise entre les deux valeurs réelles de qui rendent nulle la quantité c’est-à-dire depuis jusqu’à

On pourrait facilement parvenir aux résultats précédents, en considérant l’équation aux différences finies

mais j’ai voulu faire voir, par un exemple fort simple, que les mêmes expressions, trouvées dans le cas de positif, subsistent encore lorsque est négatif.

XXI.

Considérons l’équation aux différences finies