tendra à s’atténuer. Ce sont là des erreurs accidentelles.
Il est évident d’abord que les erreurs systématiques ne peuvent satisfaire à la loi de Gauss ; mais les erreurs accidentelles y satisfont-elles ? On a tenté un grand nombre de démonstrations ; presque toutes sont de grossiers paralogismes. On peut néanmoins démontrer la loi de Gauss en partant des hypothèses suivantes : l’erreur commise est la résultante d’un très grand nombre d’erreurs partielles et indépendantes ; chacune des erreurs partielles est très petite et obéit d’ailleurs à une loi de probabilité quelconque, sauf que la probabilité d’une erreur positive est la même que celle d’une erreur égale et de signe contraire. Il est évident que ces conditions seront remplies souvent, mais pas toujours, et nous pourrons réserver le nom d’accidentelles aux erreurs qui y satisfont.
On voit que la méthode des moindres carrés n’est pas légitime dans tous les cas ; en général, les physiciens s’en défient plus que les astronomes. Cela tient sans doute à ce que ces derniers, outre les erreurs systématiques qu’ils rencontrent comme les physiciens, ont à lutter avec une cause d’erreur extrêmement importante et qui est tout à fait accidentelle ; je veux parler des ondulations atmosphériques. Aussi il est très curieux d’entendre un physicien discuter avec un astronome au sujet d’une méthode d’observation : le physicien, persuadé qu’une bonne mesure vaut mieux que beau-