Page:Œuvres de Descartes, éd. Cousin, tome V.djvu/329

La bibliothèque libre.
Sauter à la navigation Sauter à la recherche
Cette page n’a pas encore été corrigée


n'y a que trois ou quatre lignes droites données, c'est en une des trois sections coniques ; mais il n'entreprend point de la déterminer ni de la décrire, non plus que d'expliquer celles où tous ces points se doivent trouver, lorsque la question est proposée en un plus grand nombre de lignes. Seulement il ajoute que les anciens en avaient imaginé une qu'ils montraient y être utile, mais qui semblait la plus manifeste, et qui n'était pas toutefois la première. Ce qui m'a donné occasion d'essayer si, par la méthode dont je me sers, on peut aller aussi loin qu'ils ont été.

Réponse à la question de Pappus

Et premièrement j'ai connu que cette question n'étant proposée qu'en trois, ou quatre, ou cinq lignes, on peut toujours trouver les points cherchés par la géométrie simple, c'est-à-dire en ne se servant que de la règle et du compas, ni ne faisant autre chose que ce qui a déjà été dit; excepté seulement lorsqu'il y a cinq lignes données, si elles sont toutes parallèles : auquel cas, comme aussi lorsque la question est proposée en 6, ou 7, ou 8, ou 9 lignes, on peut toujours trouver les points cherchés par la géométrie des solides, c'est-à-dire en y employant quelqu'une des trois sections coniques; excepté seulement lorsqu'il y a neuf lignes données, si elles sont toutes parallèles : auquel cas, derechef, et encore en 10, 11, 12 ou 13 lignes, on peut trouver les points cherchés par le