d’ailleurs, pu conclure, d’après mon travail de concentration, que, dans le premier échantillon examiné qui montrait nettement la raie 3814,7, la proportion de radium devait être très faible (peut-être de 0,02 pour 100). Cependant, il faut une activité 50 fois plus grande que celle de l’uranium métallique pour apercevoir nettement la raie principale du radium dans les spectres photographiés. Avec un électromètre sensible, on peut déceler la radioactivité d’un produit quand elle n’est que 1/100 de celle de l’uranium métallique. On voit que, pour déceler la présence du radium, la radioactivité est un caractère plusieurs milliers de fois plus sensible que la réaction spectrale.
Le bismuth à polonium très actif et le thorium à actinium très actif, examinés par Demarçay, n’ont encore respectivement donné que les raies du bismuth et du thorium.
Dans une publication récente, M. Giesel ([1]), qui s'est occupé de la préparation du radium, annonce que le bromure de radium donne lieu à une coloration carmin de la flamme. Le spectre de flamme du radium contient deux belles bandes rouges, une raie dans le bleu vert et deux lignes faibles dans le violet.
Extraction des substances radioactives nouvelles. — La première partie de l’opération consiste à extraire des minerais d’urane le baryum radifère, le bismuth polonifère et les terres rares contenant l’actinium. Ces trois premiers produits ayant été obtenus, on cherche, pour chacun d’eux, à isoler la substance radioactive nouvelle. Cette deuxième partie du traitement se fait par une méthode de fractionnement. On sait qu’il est difficile de trouver un moyen de séparation très parfait entre des élé-
- ↑ Giesel, Phys. Zeitschrift, 15 septembre 1902.