Page:Diderot - Encyclopedie 1ere edition tome 1.djvu/83

La bibliothèque libre.
Sauter à la navigation Sauter à la recherche
Le texte de cette page a été corrigé et est conforme au fac-similé.


M. Picard & plusieurs autres Astronomes après lui, avoient observé dans l’Étoile polaire un mouvement apparent d’environ 40″ par an qu’il paroissoit impossible d’expliquer par la parallaxe de l’orbe annuel ; parce que ce mouvement étoit dans un sens contraire à celui suivant lequel il auroit dû être, s’il étoit venu du seul mouvement de la Terre dans son orbite. Voyez Parallaxe du grand Orbe.

Ce mouvement n’ayant pû être expliqué pendant 50 ans, M. Bradley découvrit enfin en 1727 qu’il étoit causé par le mouvement successif de la lumiere combiné avec le mouvement de la Terre. Si la France a produit dans le dernier siecle les deux plus grandes découvertes de l’Astronomie physique, sçavoir, l’accourcissement du Pendule sous l’Équateur, dont Richer s’apperçut en 1672, & la propagation ou le mouvement successif de la lumiere démontré dans l’Académie des Sciences par M. Roëmer, l’Angleterre peut bien se flatter aujourd’hui d’avoir annoncé la plus grande découverte du dix-huitieme siecle.

Voici de quelle maniere M. Bradley a expliqué la théorie de l’aberration, après avoir observé pendant deux années consécutives que l’Etoile γ de la tête du Dragon, qui passoit à son zénith, & qui est fort près du Pole de l’Ecliptique, étoit plus méridionale de 39″ au mois de Mars qu’au mois de Septembre.

Si l’on suppose (Planche Astron. Fig. 31. n. 3.) que l’œil soit emporté uniformément suivant la ligne droite AB, qu’on peut bien regarder ici comme une très-petite partie de l’orbite que la Terre décrit durant quelques minutes, & que l’œil parcourre l’intervalle compris depuis A jusqu’à B précisément dans le tems que la lumiere se meut depuis C jusqu’en B, je dis qu’au lieu d’appercevoir l’Étoile dans une direction parallele à BC, l’œil appercevra, dans le cas présent, l’Étoile selon une direction parallele à la ligne AC. Car supposons que l’œil étant entraîné depuis A jusqu’en B, regarde continuellement au-travers de l’axe d’un tube très-délié, & qui seroit toûjours parallele à lui-même suivant les directions AC, ac, &c. il est évident que si la vitesse de la lumiere a un rapport assez sensible à la vitesse de la Terre, & que ce rapport soit celui de BC à AB, alors la particule de lumiere qui s’étoit d’abord trouvée à l’extrémité C du tube coulera uniformément & sans trouver d’obstacle le long de l’axe, à mesure que le tube viendra à s’avancer, puisque selon la supposition on a toûjours AB à BC comme aB à Bc, & Aa à Cc comme AB à BC ; c’est-à-dire, que l’œil ayant parcouru l’intervalle Aa, la particule de lumiere a dû descendre uniformément jusqu’en c, & par conséquent se trouvera dans le tuyau qui est alors dans la situation ac. D’ailleurs il est aisé de voir que si on donnoit au tube toute autre inclinaison, la particule de lumiere ne pourroit plus couler le long de l’axe, mais trouveroit dès son entrée un obstacle à son passage, parce que le point c ou la particule de lumiere arriveroit ne se trouveroit pas alors dans le tuyau, qui ne seroit plus parallele à AC. Or, parmi cette multitude innombrable de rayons que lance l’Étoile & qui viennent tous parallelement à BC, il s’en trouve assez dequoi fournir continuellement de nouvelles particules qui se succédant les unes aux autres à l’extrémité du tube, coulent le long de l’axe, & forment par conséquent un rayon suivant la direction AC. Il est donc évident que ce même rayon AC sera l’unique qui viendra frapper l’œil, qui par conséquent ne sauroit appercevoir l’Étoile autrement que sous cette même direction. Maintenant si au lieu de ce tube on imagine autant de lignes droites ou de petits tubes extrèmement fins & déliés, que la prunelle de l’œil peut admettre de rayons à la fois, le même raisonnement aura lieu pour chacun de ces tubes, que pour celui dont nous venons de parler. Donc l’œil ne sauroit


recevoir aucun des rayons de l’Etoile que ceux qui paroîtront venir suivant des directions paralleles à AC, & par conséquent l’Etoile paroîtra en effet dans un lieu où elle n’est pas véritablement ; c’est-à-dire, dans un lieu différent de celui où on l’auroit apperçue, si l’œil étoit resté fixe au point A.

Ce qui confirme parfaitement cette théorie si ingénieuse, & qui en porte la certitude jusqu’à la démonstration, c’est que la vitesse que doit avoir la lumiere pour que l’angle d’aberration BCA soit tel que les observations le donnent, s’accorde parfaitement avec la vitesse de la lumiere déterminée par M. Roëmer d’après les observations des Satellites de Jupiter. En effet, imaginons (Fig. 31. n°. 2.) que bc soit égal au rayon de l’orbe annuel, l’angle bca est donné par l’observation de la plus grande aberration possible des Etoiles, savoir, de 20″. On fera donc, comme le rayon est à la tangente de 20″, ainsi cb est à un quatriéme terme, qui sera la valeur de la petite portion ab de l’orbe terrestre, laquelle se trouve excéder un peu la dix-millieme partie de la moyenne distance AB ou Ab de la Terre au Soleil, puisqu’elle en est la partie. C’est pourquoi la Terre parcourant 360 degrés en 365 jours , & à proportion un arc de 57 degrés égal au rayon de l’orbite, en 58 jours ou 83709′, il s’ensuit que la 10313 partie de ce dernier nombre, c’est-à-dire, 8′ , ou 8′ 7″ sera le tems que la Terre met à parcourir le petit espace ab, & le tems que la lumiere met à parcourir l’espace bc égal au rayon de l’orbe annuel. Or M. Roëmer a trouvé par les observations des Satellites de Jupiter, que la lumiere doit mettre en effet environ 8′ 7″ à venir du Soleil jusqu’à nous. Voyez Lumiere. C’est pourquoi chacune des deux théories de M. Roëmer & de M. Bradley s’accordent à donner la même quantité pour la vitesse avec laquelle la lumiere se meut.

Au reste comme les directions que l’on regarde comme paralleles, bc, BC, ou bien ac, AC, ne le sont pas en effet, mais concourent au même point du Ciel, sçavoir à l’Etoile E, il s’ensuit qu’à mesure que la terre avancera sur la circonférence de son orbite, l’arc ou la petite tangente ab qu’elle décrit chaque jour venant à changer de direction, il en sera de même à l’égard de la ligne AC qui dans le cours d’une année entiere aura un mouvement conique autour de BC ou de AE, en sorte que prolongée dans le ciel, son extrémité doit décrire un petit cercle autour du vrai lieu qu’occupe l’Étoile ; & comme l’angle ACB ou l’angle alterne CAE qui lui est égal est de 20″, il sera vrai de dire que l’Étoile ne sçauroit jamais être apperçue dans son vrai lieu, mais qu’à chaque année elle doit recommencer à parcourir la circonférence d’un cercle autour de son véritable lieu : en sorte que si elle est au zénith, par exemple, elle pourra être vûe à son passage au méridien alternativement 20″ plus au Nord ou plus au Midi à chaque intervalle d’environ six mois. M. de Maupertuis dans son excellent ouvrage intitulé Elémens de Géographie, explique l’aberration par une comparaison ingénieuse. Il en est ainsi, dit-il, de la direction qu’il faut donner au fusil pour que le plomb frappe l’oiseau qui vole : au lieu d’ajuster directement à l’oiseau, le Chasseur tire un peu au-devant, & tire d’autant plus au-devant, que le vol de l’oiseau est plus rapide par rapport à la vitesse du plomb. Il est évident que dans cette comparaison l’oiseau représente la Terre, & le plomb représente la lumiere de l’Etoile qui la vient frapper. Cette comparaison peut servir à faire entendre le principe de l’aberration à ceux de nos Lecteurs qui n’ont aucune teinture de Géométrie. L’explication que nous venons de donner de ce même principe d’après M. Bradley peut être aussi à l’usage de ceux qui n’en ont qu’une teinture legere ; car on