Aller au contenu

Page:Joseph Louis de Lagrange - Œuvres, Tome 6.djvu/546

La bibliothèque libre.
Le texte de cette page a été corrigé et est conforme au fac-similé.

en marquant par les différences successives des premiers termes de la série c’est-à-dire, les différences première, deuxième, troisième, de ses termes, en sorte que l’on ait

Cette nouvelle série sera donc égale à la fraction

dont le numérateur et le dénominateur, étant développés et ordonnés suivant les puissances de seront aussi des polynômes, l’un du degré l’autre du degré comme ceux de la fraction génératrice de la série primitive ; d’où il est aisé de conclure que la série des différences

sera également une série récurrente du même ordre que la proposée

On pourra donc aussi appliquer notre méthode à la série des différences dont nous venons de parler, et dès qu’on en aura trouvé la fraction génératrice, si elle en a une, il n’y aura qu’à y substituer à la place de et la diviser en même temps par on aura sur-le-champ la fraction génératrice même de la série proposée.

Si la série proposée est purement algébrique de l’ordre alors on sait que les différences de l’ordre doivent être constantes, et par conséquent celles des ordres suivants nulles ; en sorte qu’on doit avoir dans ce cas