Aller au contenu

Page:Laplace - Œuvres complètes, Gauthier-Villars, 1878, tome 10.djvu/434

La bibliothèque libre.
Le texte de cette page a été corrigé et est conforme au fac-similé.

les incréments de vitesse

forces que l’on obtient, comme l’on sait, en divisant ces incréments de vitesse par l’élément du temps.

Il résulte de l’article XVII que l’intégrale relative aux forces dont une molécule fluide est sollicitée à la surface, est égale à

étant la somme de toutes les parties du sphéroïde divisées par leurs distances à la molécule fluide ; ainsi, pour avoir la valeur entière de l’intégrale il faut ajouter à la quantité précédente l’intégrale du produit des forces par les éléments de leurs directions, c’est-à-dire l’intégrale

les différentielles étant relatives aux variables et On aura donc, pour l’équation générale du mouvement du fluide

équation dans laquelle on doit observer que, le sphéroïde étant supposé sans mouvement de rotation, il faut faire dans les valeurs de et de

Maintenant on a