Aller au contenu

Page:Laplace - Œuvres complètes, Gauthier-Villars, 1878, tome 12.djvu/333

La bibliothèque libre.
Le texte de cette page a été corrigé et est conforme au fac-similé.

en différenciant encore, on aura

En continuant de différentier ainsi, on aura d’une manière très approchée les valeurs des différentielles successives du premier membre de l’équation pourvu que le nombre de ces différentiations soit très petit relativement au nombre Toutes ces équations ont lieu, étant positif ou négatif ; et lorsque est nul, elles deviennent

Les seconds membres de ces équations sont zéro, lorsque l’exposant de la puissance est de la forme ce qu’il est facile de voir d’ailleurs, en observant que

est la moitié de la série sans l’exclusion des quantités négatives élevées à la puissance série qui, étant la différence finie ième d’une puissance moindre que est nulle.

On peut, en intégrant successivement l’équation obtenir des théorèmes analogues sur les différences des puissances supérieures à ainsi l’on a par une première intégration