Aller au contenu
Menu principal
Menu principal
déplacer vers la barre latérale
masquer
Lire
Accueil
Index des auteurs
Portails thématiques
Aide au lecteur
Contacter Wikisource
Texte au hasard
Auteur au hasard
Contribuer
Scriptorium
Forum des nouveaux
Aide
Communauté
Livre au hasard
Modifications récentes
Imprimer / exporter
Télécharger en EPUB
Télécharger en MOBI
Télécharger en PDF
Autres formats
Rechercher
Rechercher
Apparence
Faire un don
Créer un compte
Se connecter
Outils personnels
Faire un don
Créer un compte
Se connecter
Pages pour les contributeurs déconnectés
en savoir plus
Contributions
Discussion
Page
:
Laplace - Œuvres complètes, Gauthier-Villars, 1878, tome 13.djvu/355
Ajouter des langues
Page précédente
Page suivante
Page
Discussion
Image
Index
français
Lire
Modifier
Voir l’historique
Outils
Outils
déplacer vers la barre latérale
masquer
Actions
Lire
Modifier
Voir l’historique
Général
Pages liées
Suivi des pages liées
Pages spéciales
Lien permanent
Informations sur la page
Citer cet article
Obtenir l’URL raccourcie
Télécharger le code QR
Imprimer / exporter
Télécharger en PDF
Version imprimable
Dans d’autres projets
Apparence
déplacer vers la barre latérale
masquer
La bibliothèque libre.
Le texte de cette page a été
corrigé
et est conforme au fac-similé.
TABLE III
pour réduire les hauteurs barométriques à zéro de température.
0.
780
m
m
.
775
m
m
.
770
m
m
.
765
m
m
.
760
m
m
.
755
m
m
.
750
m
m
.
745
m
m
.
1
0
,
m
m
126
0
,
m
m
125
0
,
m
m
124
0
,
m
m
123
0
,
m
m
123
0
,
m
m
122
0
,
m
m
121
0
,
m
m
120
2
0,252
0,250
0,249
0,247
0,245
0,244
0,242
0,241
3
0,377
0,375
0,373
0,371
0,368
0,366
0,363
0,361
4
0,503
0,500
0,497
0,494
0,490
0,488
0,484
0,481
5
0,628
0,625
0,622
0,618
0,614
0,610
0,606
0,602
6
0,756
0,751
0,746
0,741
0,736
0,731
0,727
0,722
7
0,882
0,876
0,870
0,865
0,859
0,853
0,848
0,842
8
1,008
1,001
0,994
0,988
0,982
0,975
0,969
0,962
9
1,133
1,126
1,119
1,112
1,104
1,097
1,090
1,083
10
1,259
1,251
1,243
1,235
1,227
1,219
1,211
1,203
11
1,385
1,376
1,367
1,359
1,350
1,341
1,332
1,323
12
1,510
1,501
1,492
1,482
1,472
1,463
1,453
1,444
13
1,636
1,626
1,616
1,606
1,595
1,585
1,574
1,564
14
1,761
1,751
1,740
1,729
1,718
1,707
1,695
1,684
15
1,889
1,877
1,865
1,853
1,841
1,829
1,817
1,805
16
2,015
2,002
1,989
1,976
1,963
1,950
1,938
1,925
17
2,141
2,127
2,113
2,100
2,086
2,072
2,059
2,045
18
2,267
2,252
2,237
2,223
2,209
2,194
2,180
2,165
19
2,392
2,377
2,362
2,347
2,331
2,316
2,301
3,286
20
2,518
2,502
2,486
2,470
2,454
2,438
2,422
2,406
21
2,644
2,627
2,610
2,594
2,577
2,560
2,543
2,526
22
2,770
2,752
2,734
2,717
2,699
2,682
2,664
2,646
23
3,895
2,877
2,859
2,841
2,822
2,804
2,785
2,766
24
3,021
3,002
2,983
2,964
2,945
2,926
2,906
3,886
25
3,148
3,128
3,108
3,088
3,068
3,048
3,028
3,007
26
3,274
3,253
3,232
3,211
3,190
3,169
3,149
3,127
27
3,400
3,378
3,356
3,335
3,313
3,291
3,270
3,248
28
3,524
3,503
3,480
3,458
3,436
3,413
3,391
3,368
29
3,652
3,628
3,605
3,582
3,559
3,536
3,512
3,489
30
3,778
3,754
3,730
3,706
3,682
3,658
3,634
3,610
{\displaystyle {\begin{array}{|r|r|r|r|r|r|r|r|r|}\hline \\0.&780^{\mathrm {mm} }.&775^{\mathrm {mm} }.&770^{\mathrm {mm} }.&765^{\mathrm {mm} }.&760^{\mathrm {mm} }.&755^{\mathrm {mm} }.&750^{\mathrm {mm} }.&745^{\mathrm {mm} }.\\\\\hline \\1&0{\overset {^{\mathrm {mm} }}{,}}126&0{\overset {^{\mathrm {mm} }}{,}}125&0{\overset {^{\mathrm {mm} }}{,}}124&0{\overset {^{\mathrm {mm} }}{,}}123&0{\overset {^{\mathrm {mm} }}{,}}123&0{\overset {^{\mathrm {mm} }}{,}}122&0{\overset {^{\mathrm {mm} }}{,}}121&0{\overset {^{\mathrm {mm} }}{,}}120\\2&0{,}252&0{,}250&0{,}249&0{,}247&0{,}245&0{,}244&0{,}242&0{,}241\\3&0{,}377&0{,}375&0{,}373&0{,}371&0{,}368&0{,}366&0{,}363&0{,}361\\4&0{,}503&0{,}500&0{,}497&0{,}494&0{,}490&0{,}488&0{,}484&0{,}481\\5&0{,}628&0{,}625&0{,}622&0{,}618&0{,}614&0{,}610&0{,}606&0{,}602\\6&0{,}756&0{,}751&0{,}746&0{,}741&0{,}736&0{,}731&0{,}727&0{,}722\\7&0{,}882&0{,}876&0{,}870&0{,}865&0{,}859&0{,}853&0{,}848&0{,}842\\8&1{,}008&1{,}001&0{,}994&0{,}988&0{,}982&0{,}975&0{,}969&0{,}962\\9&1{,}133&1{,}126&1{,}119&1{,}112&1{,}104&1{,}097&1{,}090&1{,}083\\10&1{,}259&1{,}251&1{,}243&1{,}235&1{,}227&1{,}219&1{,}211&1{,}203\\11&1{,}385&1{,}376&1{,}367&1{,}359&1{,}350&1{,}341&1{,}332&1{,}323\\12&1{,}510&1{,}501&1{,}492&1{,}482&1{,}472&1{,}463&1{,}453&1{,}444\\13&1{,}636&1{,}626&1{,}616&1{,}606&1{,}595&1{,}585&1{,}574&1{,}564\\14&1{,}761&1{,}751&1{,}740&1{,}729&1{,}718&1{,}707&1{,}695&1{,}684\\15&1{,}889&1{,}877&1{,}865&1{,}853&1{,}841&1{,}829&1{,}817&1{,}805\\16&2{,}015&2{,}002&1{,}989&1{,}976&1{,}963&1{,}950&1{,}938&1{,}925\\17&2{,}141&2{,}127&2{,}113&2{,}100&2{,}086&2{,}072&2{,}059&2{,}045\\18&2{,}267&2{,}252&2{,}237&2{,}223&2{,}209&2{,}194&2{,}180&2{,}165\\19&2{,}392&2{,}377&2{,}362&2{,}347&2{,}331&2{,}316&2{,}301&3{,}286\\20&2{,}518&2{,}502&2{,}486&2{,}470&2{,}454&2{,}438&2{,}422&2{,}406\\21&2{,}644&2{,}627&2{,}610&2{,}594&2{,}577&2{,}560&2{,}543&2{,}526\\22&2{,}770&2{,}752&2{,}734&2{,}717&2{,}699&2{,}682&2{,}664&2{,}646\\23&3{,}895&2{,}877&2{,}859&2{,}841&2{,}822&2{,}804&2{,}785&2{,}766\\24&3{,}021&3{,}002&2{,}983&2{,}964&2{,}945&2{,}926&2{,}906&3{,}886\\25&3{,}148&3{,}128&3{,}108&3{,}088&3{,}068&3{,}048&3{,}028&3{,}007\\26&3{,}274&3{,}253&3{,}232&3{,}211&3{,}190&3{,}169&3{,}149&3{,}127\\27&3{,}400&3{,}378&3{,}356&3{,}335&3{,}313&3{,}291&3{,}270&3{,}248\\28&3{,}524&3{,}503&3{,}480&3{,}458&3{,}436&3{,}413&3{,}391&3{,}368\\29&3{,}652&3{,}628&3{,}605&3{,}582&3{,}559&3{,}536&3{,}512&3{,}489\\30&3{,}778&3{,}754&3{,}730&3{,}706&3{,}682&3{,}658&3{,}634&3{,}610\\\\\hline \end{array}}}
0.
740
m
m
.
735
m
m
.
730
m
m
.
725
m
m
.
720
m
m
.
715
m
m
.
710
m
m
.
705
m
m
.
700
m
m
.
1
0
,
m
m
120
0
,
m
m
119
0
,
m
m
118
0
,
m
m
117
0
,
m
m
116
0
,
m
m
116
0
,
m
m
115
0
,
m
m
114
0
,
m
m
113
2
0,239
0,237
0,236
0,234
0,233
0,231
0,229
0,228
0,226
3
0,359
0,356
0,354
0,351
0,349
0,347
0,344
0,341
0,339
4
0,478
0,475
0,472
0,468
0,465
0,462
0,458
0,455
0,452
5
0,598
0,594
0,590
0,586
0,582
0,578
0,574
0,569
0,565
6
0,717
0,712
0,707
0,703
0
,
69
s
0,693
0,688
0,683
0,678
7
0,837
0,831
0,825
0,820
0,814
0,809
0,803
0,797
0,791
8
0,956
0,950
0,943
0,937
0,930
0,934
0,918
0,910
0,904
9
1,076
1,068
1,061
0,054
1,047
1,040
1,032
1,024
1,017
10
1,195
1,187
1,179
1,171
1,163
1,155
1,147
1,138
1,130
11
1,315
1,306
1,297
1,288
1,279
1,271
1,262
1,252
1,243
12
1,434
1,424
1,415
1,405
1,396
1,386
1,376
1,366
1,356
13
1,554
1,543
1,533
1,522
1,512
1,502
1,491
1,479
1,469
14
1,673
1,662
1,651
1,639
1,628
1,617
1,606
1,593
1,582
15
1,793
1,781
1,769
1,757
1,745
1,733
1,721
1,707
1,695
16
1,912
1,899
1,886
1,874
1,861
1,848
1,835
1,821
1,808
17
2,032
2,018
2,004
1,991
1,977
1,964
1,950
1,934
1,921
18
2
,
15
l
2,137
2,122
2,108
2,093
2,079
2,065
2,048
2,034
19
2,271
2,255
2,240
2,225
3,210
2,195
2,179
3,162
2,147
20
2,390
2,374
2,358
2,342
2,336
2,310
2,294
2,276
2,260
21
2,510
2,493
2,476
2,459
2,442
2,436
2,409
2,390
2,373
22
2,628
2,611
2,594
2,576
2,559
2,541
2,523
2,503
2,486
23
2,748
2,730
2,712
2,693
2,675
2,657
2,638
2,617
2,599
24
2,867
2,849
2,830
2,810
2,791
2,772
2,753
2,731
2,712
25
2,987
2,968
2,948
2,928
2,908
2,888
2,868
2,845
2,825
26
3,106
3,086
3,065
3,045
3,024
3,003
2,982
2,959
2,938
27
3,226
3,205
3,183
3,162
3,140
3,119
3,097
3,072
3,051
28
3,346
3,334
3,302
3,279
3,256
3,234
3,212
3,186
3,164
29
3,466
3,443
3,420
3,396
3,373
3,350
3,327
3,300
3,277
30
3,586
3,562
3,538
3,514
3,490
3,466
3,441
3,414
3,390
{\displaystyle {\begin{array}{|r|r|r|r|r|r|r|r|r|r|}\hline \\0.&740^{\mathrm {mm} }.&735^{\mathrm {mm} }.&730^{\mathrm {mm} }.&725^{\mathrm {mm} }.&720^{\mathrm {mm} }.&715^{\mathrm {mm} }.&710^{\mathrm {mm} }.&705^{\mathrm {mm} }.&700^{\mathrm {mm} }.\\\\\hline \\1&0{\overset {^{\mathrm {mm} }}{,}}120&0{\overset {^{\mathrm {mm} }}{,}}119&0{\overset {^{\mathrm {mm} }}{,}}118&0{\overset {^{\mathrm {mm} }}{,}}117&0{\overset {^{\mathrm {mm} }}{,}}116&0{\overset {^{\mathrm {mm} }}{,}}116&0{\overset {^{\mathrm {mm} }}{,}}115&0{\overset {^{\mathrm {mm} }}{,}}114&0{\overset {^{\mathrm {mm} }}{,}}113\\2&0{,}239&0{,}237&0{,}236&0{,}234&0{,}233&0{,}231&0{,}229&0{,}228&0{,}226\\3&0{,}359&0{,}356&0{,}354&0{,}351&0{,}349&0{,}347&0{,}344&0{,}341&0{,}339\\4&0{,}478&0{,}475&0{,}472&0{,}468&0{,}465&0{,}462&0{,}458&0{,}455&0{,}452\\5&0{,}598&0{,}594&0{,}590&0{,}586&0{,}582&0{,}578&0{,}574&0{,}569&0{,}565\\6&0{,}717&0{,}712&0{,}707&0{,}703&0{,}69s&0{,}693&0{,}688&0{,}683&0{,}678\\7&0{,}837&0{,}831&0{,}825&0{,}820&0{,}814&0{,}809&0{,}803&0{,}797&0{,}791\\8&0{,}956&0{,}950&0{,}943&0{,}937&0{,}930&0{,}934&0{,}918&0{,}910&0{,}904\\9&1{,}076&1{,}068&1{,}061&0{,}054&1{,}047&1{,}040&1{,}032&1{,}024&1{,}017\\10&1{,}195&1{,}187&1{,}179&1{,}171&1{,}163&1{,}155&1{,}147&1{,}138&1{,}130\\11&1{,}315&1{,}306&1{,}297&1{,}288&1{,}279&1{,}271&1{,}262&1{,}252&1{,}243\\12&1{,}434&1{,}424&1{,}415&1{,}405&1{,}396&1{,}386&1{,}376&1{,}366&1{,}356\\13&1{,}554&1{,}543&1{,}533&1{,}522&1{,}512&1{,}502&1{,}491&1{,}479&1{,}469\\14&1{,}673&1{,}662&1{,}651&1{,}639&1{,}628&1{,}617&1{,}606&1{,}593&1{,}582\\15&1{,}793&1{,}781&1{,}769&1{,}757&1{,}745&1{,}733&1{,}721&1{,}707&1{,}695\\16&1{,}912&1{,}899&1{,}886&1{,}874&1{,}861&1{,}848&1{,}835&1{,}821&1{,}808\\17&2{,}032&2{,}018&2{,}004&1{,}991&1{,}977&1{,}964&1{,}950&1{,}934&1{,}921\\18&2{,}15l&2{,}137&2{,}122&2{,}108&2{,}093&2{,}079&2{,}065&2{,}048&2{,}034\\19&2{,}271&2{,}255&2{,}240&2{,}225&3{,}210&2{,}195&2{,}179&3{,}162&2{,}147\\20&2{,}390&2{,}374&2{,}358&2{,}342&2{,}336&2{,}310&2{,}294&2{,}276&2{,}260\\21&2{,}510&2{,}493&2{,}476&2{,}459&2{,}442&2{,}436&2{,}409&2{,}390&2{,}373\\22&2{,}628&2{,}611&2{,}594&2{,}576&2{,}559&2{,}541&2{,}523&2{,}503&2{,}486\\23&2{,}748&2{,}730&2{,}712&2{,}693&2{,}675&2{,}657&2{,}638&2{,}617&2{,}599\\24&2{,}867&2{,}849&2{,}830&2{,}810&2{,}791&2{,}772&2{,}753&2{,}731&2{,}712\\25&2{,}987&2{,}968&2{,}948&2{,}928&2{,}908&2{,}888&2{,}868&2{,}845&2{,}825\\26&3{,}106&3{,}086&3{,}065&3{,}045&3{,}024&3{,}003&2{,}982&2{,}959&2{,}938\\27&3{,}226&3{,}205&3{,}183&3{,}162&3{,}140&3{,}119&3{,}097&3{,}072&3{,}051\\28&3{,}346&3{,}334&3{,}302&3{,}279&3{,}256&3{,}234&3{,}212&3{,}186&3{,}164\\29&3{,}466&3{,}443&3{,}420&3{,}396&3{,}373&3{,}350&3{,}327&3{,}300&3{,}277\\30&3{,}586&3{,}562&3{,}538&3{,}514&3{,}490&3{,}466&3{,}441&3{,}414&3{,}390\\\\\hline \end{array}}}
P
o
u
r
l
e
s
d
i
x
i
e
`
m
e
s
d
e
d
e
g
r
e
´
{
0
,
1
…
0,012
0
,
4
…
0,050
0
,
7
…
0,088
0
,
2
…
0,025
0
,
5
…
0,062
0
,
8
…
0,100
0
,
3
…
0,037
0
,
6
…
0,075
0
,
9
…
0,113
L
a
c
o
r
r
e
c
t
i
o
n
e
s
t
s
o
u
s
t
r
a
c
t
i
v
e
p
o
u
r
l
e
s
d
e
g
r
e
´
s
d
u
t
h
e
r
m
o
m
e
`
t
r
e
a
u
−
d
e
s
s
u
s
d
e
z
e
´
r
o
e
t
p
o
s
i
t
i
v
e
a
u
−
d
e
s
s
o
u
s
d
e
z
e
´
r
o
d
e
t
e
m
p
e
´
r
a
t
u
r
e
.
{\displaystyle {\begin{array}{|c|}\\&\mathrm {Pour\ les\ dixi{\grave {e}}mes\ de\ degr{\acute {e}}} \left\{{\begin{array}{lll}0{,}1\ldots 0{,}012&0{,}4\ldots 0{,}050&0{,}7\ldots 0{,}088\\0{,}2\ldots 0{,}025&0{,}5\ldots 0{,}062&0{,}8\ldots 0{,}100\\0{,}3\ldots 0{,}037&0{,}6\ldots 0{,}075&0{,}9\ldots 0{,}113\end{array}}\right.\\&\ \ \ \mathrm {La\ correction\ est\ soustractive\ pour\ les\ degr{\acute {e}}s\ du\ thermom{\grave {e}}tre\ au-dessus\ de\ z{\acute {e}}ro} \quad \\&\mathrm {et\ positive\ au-dessous\ de\ z{\acute {e}}ro\ de\ temp{\acute {e}}rature} .\\\\\hline \end{array}}}
Catégorie
:
Page corrigée