du Soleil des ellipses qui — si on néglige les petites perturbations dues aux autres planètes — ont une position rigoureusement fixe.
Posons sur une table une tranche de citron coupée dans la longueur du fruit et imaginons que sur la voûte de la vaste salle hémisphérique au milieu de laquelle nous supposons cette table, soient peintes les principales étoiles, les constellations boréales. Notre tranche de citron possède à peu près la forme d’une ellipse, et si nous assimilons le Soleil à un des pépins, elle peut figurer ainsi l’orbite d’une planète dans l’Univers stellaire. La loi de Newton dit que — toutes corrections faites — l’orbite planétaire garde une orientation fixe parmi les étoiles, durant que la planète en parcourt indéfiniment le tour. Cela veut dire que notre tranche de citron reste immobile.
Au contraire, la loi d’Einstein affirme que l’ellipse orbitale tourne avec beaucoup de lenteur parmi les étoiles tandis que la planète la parcourt. Cela veut dire que notre tranche de citron doit tourner légèrement sur la table de manière que les deux sommets du citron ne restent pas en face des mêmes étoiles peintes sur le mur.
Si on calcule, par la loi d’Einstein, la quantité dont doivent tourner ainsi les orbites elliptiques des planètes on trouve que cette quantité est inobservable à cause de sa petitesse, sauf pourtant pour une planète, la plus rapide de toutes, Mercure.
Mercure accomplit une révolution complète autour du