Aller au contenu

Page:Poincaré - Science et méthode (Édition définitive).djvu/169

La bibliothèque libre.
Cette page n’a pas encore été corrigée

qu’on ne le croit d’abord. Qu’est-ce que la géométrie pour le philosophe ? C’est l’étude d’un groupe, et quel groupe ? de celui des mouvements des corps solides. Comment alors définir ce groupe sans faire mouvoir quelques corps solides ?

Devons-nous conserver la définition classique des parallèles et dire qu’on appelle ainsi deux droites qui, situées dans le même plan, ne se rencontrent pas quelque loin qu’on les prolonge ? Non parce que cette définition est négative, parce qu’elle est invérifiable par l’expérience et ne saurait en conséquence être regardée comme une donnée immédiate de l’intuition. Non, surtout, parce qu’elle est totalement étrangère à la notion de groupe, à la considération du mouvement des corps solides qui est, comme je l’ai dit, la véritable source de la géométrie. Ne vaudrait-il pas mieux définir d’abord la translation rectiligne d’une figure invariable, comme un mouvement où tous les points de cette figure ont des trajectoires rectilignes ; montrer qu’une semblable translation est possible, en faisant glisser une équerre sur une règle ? De cette constatation expérimentale, érigée en axiome, il serait aisé de faire sortir la notion de parallèle et le postulatum d’Euclide lui-même.

Mécanique