Page:Œuvres de Descartes, éd. Cousin, tome V.djvu/344

La bibliothèque libre.
Sauter à la navigation Sauter à la recherche
Cette page n’a pas encore été corrigée


de laquelle on connaît que la ligne EC est du premier genre, comme en effet elle n'est autre qu'une hyperbole.

Que si, en l'instrument qui sert à la décrire, on fait qu'au lieu de la ligne droite CNK, ce soit cette hyperbole, ou quelque autre ligne courbe du premier genre, qui termine le plan CNKL, l'intersection de cette ligne et de la règle GL décrira, au lieu de l'hyperbole EC, une autre ligne courbe qui sera d'un second genre. Comme si CNK est un cercle dont L soit le centre, on décrira la première conchoïde des Anciens ; et si c'est une parabole dont le diamètre soit KB, on décrira la ligne courbe que j'ai tantôt dit être la première et la plus simple pour la question de Pappus, lorsqu'il n'y a que cinq lignes droites données par position ; mais si au lieu d'une de ces lignes courbes du premier genre, c'en est une du second qui termine le plan CNKL, on en décrira, par son moyen, une du troisième, ou si c'en est une du troisième, on en décrira une du quatrième, et ainsi à l'infini, comme il est fort aisé à connaître par le calcul. Et en quelque autre façon qu'on imagine la description d'une ligne courbe, pourvu qu'elle soit du nombre de celles que je nomme géométriques, on pourra toujours trouver une équation pour déterminer tous ses points en cette sorte.

Au reste, je mets les lignes courbes qui font