Aller au contenu

Page:Œuvres de Descartes, éd. Cousin, tome V.djvu/412

La bibliothèque libre.
Le texte de cette page a été corrigé et est conforme au fac-similé.
408
La Géométrie.

droit assez aisément ; au lieu que si c’était DG qu’on supposât, on viendrait beaucoup plus difficilement à l’équation, mais aussi elle serait très simple. Ce que je mets ici pour vous avertir que, lorsque le problème proposé n’est point solide, si en le cherchant par un chemin on vient à une équation fort composée, on peut ordinairement venir à une plus simple en le cherchant par un autre. Je pourrais encore ajouter diverses règles pour démêler les équations qui vont au cube ou au carré de carré, mais elles seraient superflues ; car lorsque les problèmes sont plans on en peut toujours trouver la construction par celles-ci.

Règle générale pour réduire toutes les équations qui passent le carré de carré.

Je pourrais aussi en ajouter d’autres pour les équations qui montent jusqu’au sursolide, ou au carré de cube, ou au-delà, mais j’aime mieux les comprendre toutes en une, et dire en général que, lorsqu’on a tâché de les réduire à même forme que celles d’autant de dimensions qui viennent de la multiplication de deux autres qui en ont moins, et qu’ayant dénombré tous les moyens par lesquels cette multiplication est possible, la chose n’a pu succéder par aucun, on doit s’assurer qu’elles ne sauraient être réduites à de plus simples ; en sorte que si la quantité inconnue a trois ou quatre dimensions, le problème pour lequel on la cherche est solide, et si elle en a cinq ou six, il est d’un de-ré plus composé, et ainsi des autres.