Aller au contenu

Page:Annales de mathématiques pures et appliquées, 1817-1818, Tome 8.djvu/52

La bibliothèque libre.
Le texte de cette page a été corrigé et est conforme au fac-similé.
46
OSCILLATIONS ET ÉQUILIBRE

dans l’équation différentielle de la section rapportée aux axes car, de cette égalité, on tirera la valeur de l’abscisse laquelle, étant substituée dans l’équation de la courbe, donnera pour la limite en question.

Cette dernière méthode est plus simple que la précédente, en ce que le centre de gravité de l’élément est plus facile à déterminer, et que la transformation des coordonnées est moins compliquée. Au reste, il y a un cas, que nous allons prendre pour exemple, et pour lequel l’une et l’autre méthodes paraissent jouir d’un même degré de simplicité.

Supposons que le corps dont il s’agit soit un cylindre droit ayant pour base l’une des sections coniques, renfermée dans l’équation

et représentée par (fig. 2) ; on aura, par la première méthode,



en faisant, pour abréger ;

Et comme, dans cet exemple, la fonction se réduit à et à désignant la hauteur du cylindre et le rayon