Page:Binet - Henri - La fatigue intellectuelle.djvu/265

La bibliothèque libre.
Aller à : navigation, rechercher
Le texte de cette page a été corrigé et est conforme au fac-similé.


tion donnée par l’addition et celle donnée par la mémoire des chiffres :


Mémoire des chiffres 
 2, 9, 5, 10, 8, 3, 4, 7, 6, 1
Additions 
 5, 4, 1, 6, 2, 9, 10, 7, 8, 3

Le coefficient de différence pour ces deux classifications est égal à 1,9.

Dans la classification précédente on représente par 1 le sujet qui fait le plus vite les additions ou qui apprend le mieux les chiffres par cœur ; il semble que la relation entre les deux séries n’existe pas ou du moins est très faible ; on pourrait se demander s’il n’y a pas de relation inverse, c’est-à-dire si les sujets qui sont les derniers en addition ne seraient pas les premiers pour la mémoire des chiffres ; remplaçons la classification de l’addition par une classification inverse dans laquelle nous représentons par I le sujet qui fait le plus lentement les additions. Nous obtenons les deux séries suivantes :

Mémoire des chiffres 
 2, 9, 5, 10, 8, 3, 4, 7, 6, 1
Additions renversées 
 VI, VII, X, V, IX, II, I, IV, III, VIII

Calculons pour ces deux séries le coefficient de différence ; nous obtenons 1,7, c’est-à-dire un nombre peu différent de 1,9. Nous concluons donc qu’il n’y a pas de relation entre la classification donnée par les additions et celle donnée par la mémoire des chiffres ; les deux séries peuvent être considérées comme indépendantes l’une de l’autre.

C’est ainsi qu’on procédera toutes les fois qu’il y aura doute. La méthode que nous avons décrite plus haut est une méthode générale qui peut être appliquée simultanément à autant de classifications que l’on veut ; nous donnerons plus loin un exemple de l’application pour comparer entre elles quatre classifications simultanément. Lorsqu’on n’aura que deux classifications à comparer, on pourra employer une méthode de calcul plus rapide que celle que