Aller au contenu

Page:Hilbert - Sur les problèmes futurs des mathématiques.djvu/20

La bibliothèque libre.
Cette page a été validée par deux contributeurs.

l’axiome connu d’Archimède, et un nouvel axiome énonçant que les nombres forment un système d’êtres qui n’est susceptible d’aucune extension, si l’on conserve intacts tous les autres axiomes (axiome d’intégrité)[1]. Or je suis persuadé que l’on peut trouver une démonstration directe de la non-contradiction des axiomes de l’Arithmétique en appliquant à ce but les méthodes de raisonnement connues dont on se sert dans la théorie des nombres irrationnels, après les avoir remaniées en leur faisant subir des modifications convenables.

Pour caractériser encore à un autre égard l’importance du problème, je ferai la remarque suivante : si l’on confère à quelque notion des attributs qui se contredisent, je dirai que, au point de vue mathématique, cette notion n’existe pas. Par exemple, en Mathématiques, il n’existe aucun nombre réel dont le carré soit égal à −1. Si l’on peut, au contraire, démontrer que les attributs conférés à une notion ne peuvent jamais, par l’application d’un nombre fini de déductions logiques, conduire à une contradiction, je dirai que l’on a ainsi démontré l’existence mathématique de la notion en question, par exemple l’existence d’un nombre ou d’une fonction remplissant certaines conditions. Dans le cas actuel où il s’agit des axiomes relatifs aux nombres réels de l’Arithmétique, la démonstration de la non-contradiction des axiomes de l’Arithmétique serait en même temps la démonstration de l’existence mathématique de l’ensemble de tous les nombres réels, c’est-à-dire du continu. De la sorte, si l’on obtenait une démonstration complète de la non-contradiction des axiomes, les objections qui ont été soulevées de temps à autre contre l’existence de la conception des nombres réels n’auraient aucune raison d’être. À vrai dire, l’ensemble de tous les nombres réels, c’est-à-dire le continu, envisagé comme nous le faisons ici, n’est pas, à proprement parler, la totalité de tous les développements possibles en fractions décimales ou

  1. Comparer une Note inédite écrite par M. Hilbert pour la traduction de sa Festschrift : Grundlagen der Geometrie (Annales de l’École Normale supérieure, 3e série, t. XVII, p. 123 ; 1900). (L. L.)