Aller au contenu

Page:Laplace - Œuvres complètes, Gauthier-Villars, 1878, tome 12.djvu/423

La bibliothèque libre.
Le texte de cette page a été corrigé et est conforme au fac-similé.

cette erreur soit un minimum. En faisant varier seul, on a

Il est facile de voir que cette différentielle disparaît si l’on suppose dans les coefficients de

étant un coefficient arbitraire indépendant de et au moyen duquel on peut rendre des nombres entiers, comme l’analyse précédente l’exige. La supposition précédente rend donc nulle la différentielle de prise par rapport à On verra de la même manière qu’elle rend nulle la différentielle de la même quantité, prise par rapport à ainsi cette supposition rend un minimum l’erreur moyenne à craindre sur la correction du premier élément, et l’on verra de la même manière qu’elle rend encore un minimum l’erreur moyenne à craindre sur la correction du second élément. Dans cette supposition, les corrections des deux éléments sont

Ces corrections sont celles que donne la méthode des moindres carrés des erreurs des observations, ou la condition du minimum de la fonction

d’où il suit que cette méthode a généralement lieu, quel que soit le nombre des éléments à déterminer ; car il est visible que l’analyse précédente peut s’étendre à un nombre quelconque d’éléments. L’er-