Aller au contenu

Page:Laplace - Œuvres complètes, Gauthier-Villars, 1878, tome 9.djvu/27

La bibliothèque libre.
Le texte de cette page a été corrigé et est conforme au fac-similé.

aux différences partielles on fait on aura

partant,

d’où il suit que est fonction de soit donc

et que l’on fasse on aura

et se déterminera par l’équation

en sorte que cette quantité est elle-même indéterminée ; mais cela ne peut jamais avoir lieu dans l’intégrale d’une équation linéaire aux différences partielles, ou, lorsque cela arrive, il est toujours possible de réduire la quantité enveloppée sous la fonction arbitraire à êtreune fonction déterminée ; car, si, dans l’équation qui sert à déterminer l’on suppose à la fonction arbitraire une valeur quelconque déterminée, plus une valeur arbitraire infiniment petite, que je représente par étant infiniment petit, on trouvera égal à une fonction finie et déterminée de et de que j’exprime par plus à une valeur infiniment petite et indéterminée dépendante de si l’on substitue présentement, dans l’expression de au lieu de et de ces valeurs, et qu’on la réduise dans une suite ascendante par rapport à on aura

étant fonction de et de la fonction arbitraire cette valeur de satisfaisant à l’équation (K), il est clair que tous les termes ho-