Aller au contenu

Page:Mémoires de l’Académie des sciences, Tome 9.djvu/534

La bibliothèque libre.
Le texte de cette page a été corrigé et est conforme au fac-similé.

en faisant, pour abréger,

de sorte qu’on ait

Le développement de suivant les puissances de ne serait pas une série assez convergente pour qu’on puisse employer, comme dans le no précédent, la formule (14) à la détermination de l’intégrale mais on aura

par conséquent

et si l’on met et à la place de et sous le signe la première équation (11) deviendra

C’est donc cette valeur de que je substitue dans celle de à la place de J’étends ensuite les intégrales relatives à depuis jusqu’à ce qui est permis, à cause de la grandeur des exposants et aux deux limites