Page:Rebière - Mathématiques et mathématiciens.djvu/58

La bibliothèque libre.
Sauter à la navigation Sauter à la recherche
Le texte de cette page a été corrigé et est conforme au fac-similé.
45
MORCEAUX CHOISIS ET PENSÉES


LES NOMBRES, LES SYMBOLES


ET LES FONCTIONS





L’apparition d’un nombre suppose l’existence d’une grandeur mathématique soumise à une opération simple qu’on nomme sa mesure. S’il n’y avait pas de grandeurs mathématiques, il n’y aurait pas de nombres, tandis que les grandeurs mathématiques existent, même pour celui qui n’a pas l’idée de nombre. L’emploi des nombres tire principalement son utilité de ce que ceux-ci ne conservent pas la trace des grandeurs qui leur ont donné naissance ; d’où il résulte que les combinaisons qu’on peut en faire, et les conséquences qu’on tire de leurs combinaisons, ont un certain degré de généralité, qui permet de les appliquer à toutes les espèces de grandeurs et que ne sauraient avoir les opérations effectuées directement sur les grandeurs mêmes.

J. F. Bonnel.

Aucun nombre entier élevé au carré ne donne 2, et l’on démontre qu’aucun nombre fractionnaire ne le donne non plus.

Nous résignerons-nous à conclure que 2 n’a pas de racine carrée ?