Page:Œuvres de Descartes, éd. Cousin, tome V.djvu/365

La bibliothèque libre.
Sauter à la navigation Sauter à la recherche
Cette page n’a pas encore été corrigée
361
Livre Second.

d’où ôtant x, on a

 ;

et remettant en ordre ces termes par le moyen de la multiplication, il vient

y6-2by5+(b2-2cd+d2)y4+(4bcd-2d2v)y3+(c2d2-d2s2+d2v2-2b2cd)y2-2bc2d2y+b2c2d2=0,

et ainsi des autres.


Autre exemple en un ovale du second genre [1].


Fig14 normale ellipse.gif


Même encore que les points de la ligne courbe ne se rapportaient pas, en la façon que j’ai dite à ceux d’une ligne droite, mais en toute autre qu’on saurait imaginer, on ne laisse pas de pouvoir toujours avoir une telle équation. Comme si CE est une ligne, qui ait tel rapport aux trois points F, G et A, que les lignes droites tirées de chacun de ses points comme C, jusqu’au point F, surpassent la ligne SA d’une quantité, qui ait certaine proportion donnée à une autre quantité dont GA surpasse les lignes tirées des mêmes points jusqu’à G. Faisons GA = b, AF = c et prenant à discrétion le point C dans la courbe, que la quantité dont CF surpasse SA, soit à celle dont GA surpasse GC, comme d à c, en sorte que si cette quantité qui est indéterminée se nomme z, FC est c + z et GC est .

Puis posant MA = y, GM est b - y, et FM est c + y, et à cause du triangle rectangle CMG, ôtant le carré de GM du carré de GC, on a le carré de CM, qui est

 ;

  1. Titre dans la table des matières