Aller au contenu

Page:Gauss - Recherches arithmétiques, traduction Poullet-Delisle, 1807.djvu/238

La bibliothèque libre.
Cette page a été validée par deux contributeurs.
216
RECHERCHES

, , , etc. sont des nombres entiers quelconques.

Si l’on introduit à la place des inconnues , , d’autres inconnues

,


qui seront évidemment entiers quand , le seront, on aura l’équation


ou, en faisant pour abréger                               ,


Or nous avons donné la manière de trouver toutes les solutions de cette équation, c’est-à-dire, toutes les représentations du nombre par la forme  ; mais on a par les relations entre , , et ,

Si donc on rejette de toutes les valeurs qui en résultent pour et , celles qui sont fractionnaires, il ne restera que les solutions cherchées.

À l’égard de cette solution, il y a plusieurs observations à faire.

1o. Si ne peut être représenté par la forme , ou si aucune représentation ne fournit de valeurs entières pour ,  ; l’équation n’est pas résoluble.

2o. Quand le déterminant de la forme est négatif ou positif quarré, et qu’on a en même temps les représentations du nombre par la forme sont limitées, et parconséquent aussi les solutions de l’équation proposée, s’il en existe.

3o. Quand est positif non quarré, ou qu’il est quarré, et qu’on a en même temps si le nombre peut être représenté par la forme le nombre des représentations sera infini. Mais comme il est impossible de trouver alors toutes

ces